{"title":"LWCNN框架的构建及其在行人分割检测中的应用","authors":"R. Kanthavel","doi":"10.36548/jiip.2021.3.008","DOIUrl":null,"url":null,"abstract":"To solve the challenges in traffic object identification, fuzzification, and simplification in a real traffic environment, it is highly required to develop an automatic detection and classification technique for roads, automobiles, and pedestrians with multiple traffic objects inside the same framework. The proposed method has been evaluated on a database with complicated poses, motions, backgrounds, and lighting conditions for an urban scenario where pedestrians are not obstructed. The suggested CNN classifier has an FPR of less than that of the SVM classifier. Confirming the significance of automatically optimized features, the SVM classifier's accuracy is equal to that of the CNN. The proposed framework is integrated with the additional adaptive segmentation method to identify pedestrians more precisely than the conventional techniques. Additionally, the proposed lightweight feature mapping leads to faster calculation times and it has also been verified and tabulated in the results and discussion section.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of LWCNN Framework and its Application to Pedestrian Detection with Segmentation Process\",\"authors\":\"R. Kanthavel\",\"doi\":\"10.36548/jiip.2021.3.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve the challenges in traffic object identification, fuzzification, and simplification in a real traffic environment, it is highly required to develop an automatic detection and classification technique for roads, automobiles, and pedestrians with multiple traffic objects inside the same framework. The proposed method has been evaluated on a database with complicated poses, motions, backgrounds, and lighting conditions for an urban scenario where pedestrians are not obstructed. The suggested CNN classifier has an FPR of less than that of the SVM classifier. Confirming the significance of automatically optimized features, the SVM classifier's accuracy is equal to that of the CNN. The proposed framework is integrated with the additional adaptive segmentation method to identify pedestrians more precisely than the conventional techniques. Additionally, the proposed lightweight feature mapping leads to faster calculation times and it has also been verified and tabulated in the results and discussion section.\",\"PeriodicalId\":10896,\"journal\":{\"name\":\"Day 1 Tue, September 21, 2021\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, September 21, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36548/jiip.2021.3.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jiip.2021.3.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of LWCNN Framework and its Application to Pedestrian Detection with Segmentation Process
To solve the challenges in traffic object identification, fuzzification, and simplification in a real traffic environment, it is highly required to develop an automatic detection and classification technique for roads, automobiles, and pedestrians with multiple traffic objects inside the same framework. The proposed method has been evaluated on a database with complicated poses, motions, backgrounds, and lighting conditions for an urban scenario where pedestrians are not obstructed. The suggested CNN classifier has an FPR of less than that of the SVM classifier. Confirming the significance of automatically optimized features, the SVM classifier's accuracy is equal to that of the CNN. The proposed framework is integrated with the additional adaptive segmentation method to identify pedestrians more precisely than the conventional techniques. Additionally, the proposed lightweight feature mapping leads to faster calculation times and it has also been verified and tabulated in the results and discussion section.