摘要:乳腺癌中KLF4通过抑制MAPK信号通路克服他莫昔芬耐药

Yunlu Jia, Wang Linbo
{"title":"摘要:乳腺癌中KLF4通过抑制MAPK信号通路克服他莫昔芬耐药","authors":"Yunlu Jia, Wang Linbo","doi":"10.1158/1557-3125.ADVBC17-A46","DOIUrl":null,"url":null,"abstract":"Kruppel-like factor 4 (KLF4) has critical roles in breast cancer development and progression and several solid tumors. Tamoxifen (TAM) resistance represents a daunting challenge to the successful treatment of breast cancer. KLF4 expression, function, and regulation in the efficacy of TAM therapy in breast cancer have yet to be demonstrated. Here, we investigated the clinical significance and biologic effects of KLF4 in breast cancer. Firstly, higher expression of KLF4 was correlated with increased TAM sensitivity in breast cells, and analysis of GEO datasets indicated that KLF4 expression was positively correlated with ERa and enhanced expression of KLF4 sensitized breast cancer patients to endocrine therapy. Knockdown of KLF4 in MCF-7 and BCAP37 cells led to increased TAM resistance, while ectopic KLF4 expression promoted the responsiveness of MCF-7/TAM and T47D cells to TAM. Secondly, ectopic KLF4 overexpression suppressed MCF-7/TAM cell growth, invasion, and migration ability. Besides, KLF4 expression was downregulated in breast cancer tumor tissues and high expression of KLF4 linked to favorable outcome. Mechanistically, KLF4 may enhance the responsiveness of breast cancer cells to TAM through suppressing mitogen-activated protein kinase (MAPK) signaling pathway. We found that ERK and P38 were relatively activated in MCF-7/TAM compared with MCF-7, and treatment with MAPK-specific inhibitors can significantly suppress cell viability. Knockdown of KLF4 activated ERK and P38 and drove MCF-7 cells to become resistant to TAM. Conversely, overexpression of KLF4 in MCF-7/TAM cells suppressed ERK and P38 signaling and resulted in enhanced sensitivity to TAM. Therefore, our findings suggest that KLF4 contributes to TAM efficiency in breast cancer via phosphorylation modification of ERK and P38 signaling. Collectively, this study highlighted the significance of KLF4/MAPK signal interaction in regulating TAM resistance of breast cancer, and suggested that targeting the KLF4/MAPK signaling may be a potential therapeutic strategy for breast cancer treatment, especially for TAM-resistant patients. Note: This abstract was not presented at the conference. Citation Format: Yunlu Jia, Wang Linbo. KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway in breast cancer [abstract]. In: Proceedings of the AACR Special Conference: Advances in Breast Cancer Research; 2017 Oct 7-10; Hollywood, CA. Philadelphia (PA): AACR; Mol Cancer Res 2018;16(8_Suppl):Abstract nr A46.","PeriodicalId":20897,"journal":{"name":"Resistance Mechanisms","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract A46: KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway in breast cancer\",\"authors\":\"Yunlu Jia, Wang Linbo\",\"doi\":\"10.1158/1557-3125.ADVBC17-A46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kruppel-like factor 4 (KLF4) has critical roles in breast cancer development and progression and several solid tumors. Tamoxifen (TAM) resistance represents a daunting challenge to the successful treatment of breast cancer. KLF4 expression, function, and regulation in the efficacy of TAM therapy in breast cancer have yet to be demonstrated. Here, we investigated the clinical significance and biologic effects of KLF4 in breast cancer. Firstly, higher expression of KLF4 was correlated with increased TAM sensitivity in breast cells, and analysis of GEO datasets indicated that KLF4 expression was positively correlated with ERa and enhanced expression of KLF4 sensitized breast cancer patients to endocrine therapy. Knockdown of KLF4 in MCF-7 and BCAP37 cells led to increased TAM resistance, while ectopic KLF4 expression promoted the responsiveness of MCF-7/TAM and T47D cells to TAM. Secondly, ectopic KLF4 overexpression suppressed MCF-7/TAM cell growth, invasion, and migration ability. Besides, KLF4 expression was downregulated in breast cancer tumor tissues and high expression of KLF4 linked to favorable outcome. Mechanistically, KLF4 may enhance the responsiveness of breast cancer cells to TAM through suppressing mitogen-activated protein kinase (MAPK) signaling pathway. We found that ERK and P38 were relatively activated in MCF-7/TAM compared with MCF-7, and treatment with MAPK-specific inhibitors can significantly suppress cell viability. Knockdown of KLF4 activated ERK and P38 and drove MCF-7 cells to become resistant to TAM. Conversely, overexpression of KLF4 in MCF-7/TAM cells suppressed ERK and P38 signaling and resulted in enhanced sensitivity to TAM. Therefore, our findings suggest that KLF4 contributes to TAM efficiency in breast cancer via phosphorylation modification of ERK and P38 signaling. Collectively, this study highlighted the significance of KLF4/MAPK signal interaction in regulating TAM resistance of breast cancer, and suggested that targeting the KLF4/MAPK signaling may be a potential therapeutic strategy for breast cancer treatment, especially for TAM-resistant patients. Note: This abstract was not presented at the conference. Citation Format: Yunlu Jia, Wang Linbo. KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway in breast cancer [abstract]. In: Proceedings of the AACR Special Conference: Advances in Breast Cancer Research; 2017 Oct 7-10; Hollywood, CA. Philadelphia (PA): AACR; Mol Cancer Res 2018;16(8_Suppl):Abstract nr A46.\",\"PeriodicalId\":20897,\"journal\":{\"name\":\"Resistance Mechanisms\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resistance Mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1557-3125.ADVBC17-A46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resistance Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1557-3125.ADVBC17-A46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

kruppel样因子4 (KLF4)在乳腺癌和几种实体瘤的发生发展中起着关键作用。他莫昔芬(TAM)耐药性是成功治疗乳腺癌的一个艰巨挑战。KLF4在TAM治疗乳腺癌疗效中的表达、功能和调控尚未得到证实。在此,我们探讨了KLF4在乳腺癌中的临床意义和生物学效应。首先,KLF4的高表达与乳腺细胞TAM敏感性增加相关,GEO数据集分析表明KLF4表达与ERa呈正相关,KLF4表达增强使乳腺癌患者对内分泌治疗敏感。MCF-7和BCAP37细胞中KLF4的敲低导致TAM耐药性增加,而异位表达KLF4则促进MCF-7/TAM和T47D细胞对TAM的反应性。其次,异位KLF4过表达抑制MCF-7/TAM细胞的生长、侵袭和迁移能力。此外,KLF4在乳腺癌肿瘤组织中的表达下调,KLF4的高表达与良好的预后相关。机制上,KLF4可能通过抑制丝裂原活化蛋白激酶(MAPK)信号通路增强乳腺癌细胞对TAM的反应性。我们发现,与MCF-7相比,ERK和P38在MCF-7/TAM中相对活化,并且用mapk特异性抑制剂治疗可以显著抑制细胞活力。敲低KLF4激活ERK和P38,驱动MCF-7细胞对TAM产生抗性。相反,MCF-7/TAM细胞中KLF4的过表达抑制了ERK和P38信号传导,导致对TAM的敏感性增强。因此,我们的研究结果表明,KLF4通过磷酸化修饰ERK和P38信号传导来促进TAM在乳腺癌中的作用。综上所述,本研究强调了KLF4/MAPK信号相互作用在调节乳腺癌TAM耐药中的重要意义,并提示靶向KLF4/MAPK信号可能是乳腺癌治疗的潜在治疗策略,特别是对于TAM耐药患者。注:本摘要未在会议上发表。引用格式:贾云路,王林波。KLF4通过抑制乳腺癌中MAPK信号通路克服他莫昔芬耐药[摘要]。摘自:AACR特别会议论文集:乳腺癌研究进展;2017年10月7-10日;费城(PA): AACR;中华肿瘤杂志,2018;16(8):1 - 6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abstract A46: KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway in breast cancer
Kruppel-like factor 4 (KLF4) has critical roles in breast cancer development and progression and several solid tumors. Tamoxifen (TAM) resistance represents a daunting challenge to the successful treatment of breast cancer. KLF4 expression, function, and regulation in the efficacy of TAM therapy in breast cancer have yet to be demonstrated. Here, we investigated the clinical significance and biologic effects of KLF4 in breast cancer. Firstly, higher expression of KLF4 was correlated with increased TAM sensitivity in breast cells, and analysis of GEO datasets indicated that KLF4 expression was positively correlated with ERa and enhanced expression of KLF4 sensitized breast cancer patients to endocrine therapy. Knockdown of KLF4 in MCF-7 and BCAP37 cells led to increased TAM resistance, while ectopic KLF4 expression promoted the responsiveness of MCF-7/TAM and T47D cells to TAM. Secondly, ectopic KLF4 overexpression suppressed MCF-7/TAM cell growth, invasion, and migration ability. Besides, KLF4 expression was downregulated in breast cancer tumor tissues and high expression of KLF4 linked to favorable outcome. Mechanistically, KLF4 may enhance the responsiveness of breast cancer cells to TAM through suppressing mitogen-activated protein kinase (MAPK) signaling pathway. We found that ERK and P38 were relatively activated in MCF-7/TAM compared with MCF-7, and treatment with MAPK-specific inhibitors can significantly suppress cell viability. Knockdown of KLF4 activated ERK and P38 and drove MCF-7 cells to become resistant to TAM. Conversely, overexpression of KLF4 in MCF-7/TAM cells suppressed ERK and P38 signaling and resulted in enhanced sensitivity to TAM. Therefore, our findings suggest that KLF4 contributes to TAM efficiency in breast cancer via phosphorylation modification of ERK and P38 signaling. Collectively, this study highlighted the significance of KLF4/MAPK signal interaction in regulating TAM resistance of breast cancer, and suggested that targeting the KLF4/MAPK signaling may be a potential therapeutic strategy for breast cancer treatment, especially for TAM-resistant patients. Note: This abstract was not presented at the conference. Citation Format: Yunlu Jia, Wang Linbo. KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway in breast cancer [abstract]. In: Proceedings of the AACR Special Conference: Advances in Breast Cancer Research; 2017 Oct 7-10; Hollywood, CA. Philadelphia (PA): AACR; Mol Cancer Res 2018;16(8_Suppl):Abstract nr A46.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信