空间周期垂直表面温度和纳米粒子对水中自然对流的个别影响

IF 2.8 4区 工程技术 Q2 ENGINEERING, MECHANICAL
M. Narayana, Richa Saha, P. Siddheshwar, S. S. Nagouda
{"title":"空间周期垂直表面温度和纳米粒子对水中自然对流的个别影响","authors":"M. Narayana, Richa Saha, P. Siddheshwar, S. S. Nagouda","doi":"10.1115/1.4056922","DOIUrl":null,"url":null,"abstract":"\n This paper considers the thermo-convective boundary-layer flow (BLF) of a water-copper mono-nanofluid over a flat vertical surface which is subjected to three types of periodic temperature variations described by the sinusoidal, sawtooth and triangular waveforms. The temperature of the fluid at the flat surface is greater than the surrounding ambient temperature. The governing equations describing the BLF have been reduced to a non-similar form using an appropriate stream function formulation. The Keller-Box method is used to obtain numerical solution of the boundary-value problem. The effect of the pertinent parameters on the nature of the flow and the heat transfer has been discussed using actual thermophysical data. The results about the shear-stress and heat transfer rate at the surface are presented as well. To study the nature of BLF, the velocity and thermal boundary-layers, the streamline and isotherm plots have been considered, which reveal that the nanoparticle volume-fraction, amplitude of surface temperature variations and the Grashof number play a pivotal role in enhancing/diminishing heat transfer. The final outcome reveals that the heat transfer is highest for the sinusoidal waveform, followed by that of the triangular and then, the sawtooth. An important inference is that a symmetric periodic temperature distribution at the surface enhances heat transfer more than that of a constant surface-temperature.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"26 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Individual Effect of Spatially-Periodic Vertical Surface Temperatures And Nanoparticles On Natural Convection In Water\",\"authors\":\"M. Narayana, Richa Saha, P. Siddheshwar, S. S. Nagouda\",\"doi\":\"10.1115/1.4056922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper considers the thermo-convective boundary-layer flow (BLF) of a water-copper mono-nanofluid over a flat vertical surface which is subjected to three types of periodic temperature variations described by the sinusoidal, sawtooth and triangular waveforms. The temperature of the fluid at the flat surface is greater than the surrounding ambient temperature. The governing equations describing the BLF have been reduced to a non-similar form using an appropriate stream function formulation. The Keller-Box method is used to obtain numerical solution of the boundary-value problem. The effect of the pertinent parameters on the nature of the flow and the heat transfer has been discussed using actual thermophysical data. The results about the shear-stress and heat transfer rate at the surface are presented as well. To study the nature of BLF, the velocity and thermal boundary-layers, the streamline and isotherm plots have been considered, which reveal that the nanoparticle volume-fraction, amplitude of surface temperature variations and the Grashof number play a pivotal role in enhancing/diminishing heat transfer. The final outcome reveals that the heat transfer is highest for the sinusoidal waveform, followed by that of the triangular and then, the sawtooth. An important inference is that a symmetric periodic temperature distribution at the surface enhances heat transfer more than that of a constant surface-temperature.\",\"PeriodicalId\":15937,\"journal\":{\"name\":\"Journal of Heat Transfer-transactions of The Asme\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heat Transfer-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056922\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056922","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了水-铜单纳米流体在垂直平面上的热对流边界层流动(BLF),该边界层受三种周期性温度变化的影响,这些周期性温度变化由正弦、锯齿和三角形波形描述。流体在平面上的温度大于周围环境的温度。描述BLF的控制方程已使用适当的流函数公式简化为非相似形式。采用凯勒盒法对边值问题进行数值求解。利用实际热物理数据,讨论了有关参数对流动性质和换热的影响。并给出了表面剪切应力和传热速率的计算结果。为了研究BLF的性质,我们考虑了速度和热边界层、流线和等温线图,结果表明纳米颗粒体积分数、表面温度变化幅度和Grashof数对传热的增强/减弱起关键作用。最后的结果表明,传热是最高的正弦波形,其次是三角形,然后是锯齿形。一个重要的推论是,对称的周期性表面温度分布比恒定的表面温度分布更能增强传热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Individual Effect of Spatially-Periodic Vertical Surface Temperatures And Nanoparticles On Natural Convection In Water
This paper considers the thermo-convective boundary-layer flow (BLF) of a water-copper mono-nanofluid over a flat vertical surface which is subjected to three types of periodic temperature variations described by the sinusoidal, sawtooth and triangular waveforms. The temperature of the fluid at the flat surface is greater than the surrounding ambient temperature. The governing equations describing the BLF have been reduced to a non-similar form using an appropriate stream function formulation. The Keller-Box method is used to obtain numerical solution of the boundary-value problem. The effect of the pertinent parameters on the nature of the flow and the heat transfer has been discussed using actual thermophysical data. The results about the shear-stress and heat transfer rate at the surface are presented as well. To study the nature of BLF, the velocity and thermal boundary-layers, the streamline and isotherm plots have been considered, which reveal that the nanoparticle volume-fraction, amplitude of surface temperature variations and the Grashof number play a pivotal role in enhancing/diminishing heat transfer. The final outcome reveals that the heat transfer is highest for the sinusoidal waveform, followed by that of the triangular and then, the sawtooth. An important inference is that a symmetric periodic temperature distribution at the surface enhances heat transfer more than that of a constant surface-temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信