一种具有干扰解耦的数据驱动过程监测方法*

Hao Luo, Kuan Li, M. Huo, Shen Yin, O. Kaynak
{"title":"一种具有干扰解耦的数据驱动过程监测方法*","authors":"Hao Luo, Kuan Li, M. Huo, Shen Yin, O. Kaynak","doi":"10.1109/DDCLS.2018.8515978","DOIUrl":null,"url":null,"abstract":"This paper presents the study on the data-driven process monitoring system design for the dynamic processes with deterministic disturbance. The basic idea of the proposed methods are to identify the stable kernel representation (SKR) of the dynamic process by projecting the process data into different subspaces. With the help of the projection, the kernel subspace, which delivers the residual decoupled from the disturbance, can be further determined. Based on the identified data-driven SKRs, process monitoring systems are developed. The performance and effectiveness of the proposed schemes are verified and demonstrated through the numerical study on randomly generated systems.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"18 1","pages":"569-574"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Data-Driven Process Monitoring Approach with Disturbance Decoupling*\",\"authors\":\"Hao Luo, Kuan Li, M. Huo, Shen Yin, O. Kaynak\",\"doi\":\"10.1109/DDCLS.2018.8515978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the study on the data-driven process monitoring system design for the dynamic processes with deterministic disturbance. The basic idea of the proposed methods are to identify the stable kernel representation (SKR) of the dynamic process by projecting the process data into different subspaces. With the help of the projection, the kernel subspace, which delivers the residual decoupled from the disturbance, can be further determined. Based on the identified data-driven SKRs, process monitoring systems are developed. The performance and effectiveness of the proposed schemes are verified and demonstrated through the numerical study on randomly generated systems.\",\"PeriodicalId\":6565,\"journal\":{\"name\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"18 1\",\"pages\":\"569-574\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2018.8515978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8515978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对具有确定性扰动的动态过程,研究了数据驱动过程监控系统的设计。提出的方法的基本思想是通过将过程数据投影到不同的子空间来识别动态过程的稳定核表示(SKR)。借助投影,可以进一步确定传递残差与扰动解耦的核子空间。基于确定的数据驱动skr,开发了过程监控系统。通过对随机生成系统的数值研究,验证了所提方案的性能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data-Driven Process Monitoring Approach with Disturbance Decoupling*
This paper presents the study on the data-driven process monitoring system design for the dynamic processes with deterministic disturbance. The basic idea of the proposed methods are to identify the stable kernel representation (SKR) of the dynamic process by projecting the process data into different subspaces. With the help of the projection, the kernel subspace, which delivers the residual decoupled from the disturbance, can be further determined. Based on the identified data-driven SKRs, process monitoring systems are developed. The performance and effectiveness of the proposed schemes are verified and demonstrated through the numerical study on randomly generated systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信