{"title":"一类带运动边界的简并奇异波动方程的精确可控性","authors":"Alhabib Moumni, J. Salhi","doi":"10.3934/naco.2022001","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the exact boundary controllability for a degenerate and singular wave equation in a bounded interval with a moving endpoint. By the multiplier method and using an adapted Hardy-poincaré inequality, we prove direct and inverse inequalities for the solutions of the associated adjoint equation. As a consequence, by the Hilbert Uniqueness Method, we deduce the controllability result of the considered system when the control acts on the moving boundary. Furthermore, improved estimates of the speed of the moving endpoint and the controllability time are obtained.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exact controllability for a degenerate and singular wave equation with moving boundary\",\"authors\":\"Alhabib Moumni, J. Salhi\",\"doi\":\"10.3934/naco.2022001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the exact boundary controllability for a degenerate and singular wave equation in a bounded interval with a moving endpoint. By the multiplier method and using an adapted Hardy-poincaré inequality, we prove direct and inverse inequalities for the solutions of the associated adjoint equation. As a consequence, by the Hilbert Uniqueness Method, we deduce the controllability result of the considered system when the control acts on the moving boundary. Furthermore, improved estimates of the speed of the moving endpoint and the controllability time are obtained.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2022001\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2022001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exact controllability for a degenerate and singular wave equation with moving boundary
This paper is concerned with the exact boundary controllability for a degenerate and singular wave equation in a bounded interval with a moving endpoint. By the multiplier method and using an adapted Hardy-poincaré inequality, we prove direct and inverse inequalities for the solutions of the associated adjoint equation. As a consequence, by the Hilbert Uniqueness Method, we deduce the controllability result of the considered system when the control acts on the moving boundary. Furthermore, improved estimates of the speed of the moving endpoint and the controllability time are obtained.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.