采用不同配置工艺的超滤和滤得到的牛和羊乳清蛋白浓缩物的特性

M. Henriques, C. Pereira, M. H. Gil
{"title":"采用不同配置工艺的超滤和滤得到的牛和羊乳清蛋白浓缩物的特性","authors":"M. Henriques, C. Pereira, M. H. Gil","doi":"10.9734/bpi/cacs/v1/9761d","DOIUrl":null,"url":null,"abstract":"The goal of this study was to valorize bovine and ovine cheese whey from small and medium cheese manufacturing plants by producing liquid and dry whey protein concentrates (LWPC and WPC). The flexibility provided by batch ultrafiltration (UF) and diafiltration (DF) enabled the production of liquid bovine WPC with protein contents ranging from 43 to 66% (dry basis) and ovine WPC with protein contents ranging from 61 to 87% (dry basis). Diafiltration, performed in sequential dilution mode (DFsdm) did not significantly improve the composition of WPC liquid products comparing to the results achieved by conventional UF. In comparison to traditional UF, using DF in volume reduction mode (DFvrm) enhanced protein content by more than 20%. Ovine products have greater protein content (62-84% on a dry basis), which makes them more appealing for manufacturing. Protein profiles varied with the whey origin and with the concentration process. By using batch DFvrm it was possible to obtain richer protein products free of low molecular weight compounds in comparison to the DFsdm mode. Finally, it can be concluded that use of membrane technology allows the recovery and direct valorization of the whey components in medium and small cheese companies, solving their environmental problems and contributing to the circular economy.","PeriodicalId":9698,"journal":{"name":"Challenges and Advances in Chemical Science Vol. 1","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of Bovine and Ovine Whey Protein Concentrates Obtained by Ultrafiltration and Diafiltration Using Different Configuration Processes\",\"authors\":\"M. Henriques, C. Pereira, M. H. Gil\",\"doi\":\"10.9734/bpi/cacs/v1/9761d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study was to valorize bovine and ovine cheese whey from small and medium cheese manufacturing plants by producing liquid and dry whey protein concentrates (LWPC and WPC). The flexibility provided by batch ultrafiltration (UF) and diafiltration (DF) enabled the production of liquid bovine WPC with protein contents ranging from 43 to 66% (dry basis) and ovine WPC with protein contents ranging from 61 to 87% (dry basis). Diafiltration, performed in sequential dilution mode (DFsdm) did not significantly improve the composition of WPC liquid products comparing to the results achieved by conventional UF. In comparison to traditional UF, using DF in volume reduction mode (DFvrm) enhanced protein content by more than 20%. Ovine products have greater protein content (62-84% on a dry basis), which makes them more appealing for manufacturing. Protein profiles varied with the whey origin and with the concentration process. By using batch DFvrm it was possible to obtain richer protein products free of low molecular weight compounds in comparison to the DFsdm mode. Finally, it can be concluded that use of membrane technology allows the recovery and direct valorization of the whey components in medium and small cheese companies, solving their environmental problems and contributing to the circular economy.\",\"PeriodicalId\":9698,\"journal\":{\"name\":\"Challenges and Advances in Chemical Science Vol. 1\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Challenges and Advances in Chemical Science Vol. 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/bpi/cacs/v1/9761d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Challenges and Advances in Chemical Science Vol. 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bpi/cacs/v1/9761d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是通过生产液体和干乳清蛋白浓缩物(LWPC和WPC)来提高中小型奶酪制造厂生产的牛和羊奶酪乳清的价值。间歇超滤(UF)和稀释滤(DF)所提供的灵活性使生产出蛋白质含量为43% ~ 66%(干基)的液态牛WPC和蛋白质含量为61% ~ 87%(干基)的液态羊WPC成为可能。与常规超滤相比,在顺序稀释模式(DFsdm)下进行的滤除并没有显著改善WPC液体产品的组成。与传统的UF相比,在体积缩小模式下使用DF (DFvrm)可使蛋白质含量提高20%以上。羊肉产品的蛋白质含量更高(干燥基础上为62-84%),这使得它们对制造业更有吸引力。蛋白谱随乳清来源和浓缩过程而变化。与DFsdm模式相比,使用批量DFvrm可以获得不含低分子量化合物的更丰富的蛋白质产品。最后,可以得出结论,膜技术的使用允许中小型奶酪公司的乳清成分的回收和直接增值,解决他们的环境问题,并为循环经济做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristics of Bovine and Ovine Whey Protein Concentrates Obtained by Ultrafiltration and Diafiltration Using Different Configuration Processes
The goal of this study was to valorize bovine and ovine cheese whey from small and medium cheese manufacturing plants by producing liquid and dry whey protein concentrates (LWPC and WPC). The flexibility provided by batch ultrafiltration (UF) and diafiltration (DF) enabled the production of liquid bovine WPC with protein contents ranging from 43 to 66% (dry basis) and ovine WPC with protein contents ranging from 61 to 87% (dry basis). Diafiltration, performed in sequential dilution mode (DFsdm) did not significantly improve the composition of WPC liquid products comparing to the results achieved by conventional UF. In comparison to traditional UF, using DF in volume reduction mode (DFvrm) enhanced protein content by more than 20%. Ovine products have greater protein content (62-84% on a dry basis), which makes them more appealing for manufacturing. Protein profiles varied with the whey origin and with the concentration process. By using batch DFvrm it was possible to obtain richer protein products free of low molecular weight compounds in comparison to the DFsdm mode. Finally, it can be concluded that use of membrane technology allows the recovery and direct valorization of the whey components in medium and small cheese companies, solving their environmental problems and contributing to the circular economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信