基于智能手表的微手势识别评估

Sonu Agarwal, Sanjay Ghosh
{"title":"基于智能手表的微手势识别评估","authors":"Sonu Agarwal, Sanjay Ghosh","doi":"10.1109/ICMLA.2017.00-24","DOIUrl":null,"url":null,"abstract":"Gesture based interaction and its recognition has been an area of active research with the growing popularity of wearables. We here propose an approach to detect fine-grained finger and palm motions using inertial sensors in a commercial smartwatch. A user specific SVM based classifier is developed for 7 microgestures with a classification accuracy of 94.4%. We extend this to a user adaptive model by including a few representative instances of a new user and achieve a classification accuracy of 91.7%. Further, we are able to differentiate between variations of a microgesture using three fundamental building blocks - distance, speed and orientation. A novel regression based approach is presented to predict the distance parameter. The idea is demonstrated on a swipe gesture with an error of 14%.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"2012 1","pages":"986-991"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of Microgesture Recognition Using a Smartwatch\",\"authors\":\"Sonu Agarwal, Sanjay Ghosh\",\"doi\":\"10.1109/ICMLA.2017.00-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gesture based interaction and its recognition has been an area of active research with the growing popularity of wearables. We here propose an approach to detect fine-grained finger and palm motions using inertial sensors in a commercial smartwatch. A user specific SVM based classifier is developed for 7 microgestures with a classification accuracy of 94.4%. We extend this to a user adaptive model by including a few representative instances of a new user and achieve a classification accuracy of 91.7%. Further, we are able to differentiate between variations of a microgesture using three fundamental building blocks - distance, speed and orientation. A novel regression based approach is presented to predict the distance parameter. The idea is demonstrated on a swipe gesture with an error of 14%.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"2012 1\",\"pages\":\"986-991\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.00-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着可穿戴设备的日益普及,基于手势的交互及其识别已经成为一个活跃的研究领域。我们在这里提出了一种方法来检测细粒度的手指和手掌运动使用惯性传感器在商业智能手表。针对7种微手势,开发了基于用户支持向量机的分类器,分类准确率达到94.4%。我们将其扩展到用户自适应模型,包括一些新用户的代表性实例,并实现了91.7%的分类精度。此外,我们能够通过三个基本的构建块来区分微手势的变化——距离、速度和方向。提出了一种新的基于回归的距离参数预测方法。这个想法在滑动手势上得到了验证,误差为14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Microgesture Recognition Using a Smartwatch
Gesture based interaction and its recognition has been an area of active research with the growing popularity of wearables. We here propose an approach to detect fine-grained finger and palm motions using inertial sensors in a commercial smartwatch. A user specific SVM based classifier is developed for 7 microgestures with a classification accuracy of 94.4%. We extend this to a user adaptive model by including a few representative instances of a new user and achieve a classification accuracy of 91.7%. Further, we are able to differentiate between variations of a microgesture using three fundamental building blocks - distance, speed and orientation. A novel regression based approach is presented to predict the distance parameter. The idea is demonstrated on a swipe gesture with an error of 14%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信