Radon-Nikodym导数的可计算性

IF 0.2
M. Hoyrup, Cristobal Rojas, K. Weihrauch
{"title":"Radon-Nikodym导数的可计算性","authors":"M. Hoyrup, Cristobal Rojas, K. Weihrauch","doi":"10.3233/COM-2012-005","DOIUrl":null,"url":null,"abstract":"We show that a single application of the noncomputable operator EC, which transforms enumerations of sets (in N) to their characteristic functions, suffices to compute the Radon-Nikodym derivative dµ/dλ of a finite measure µ, which is absolutely continuous w.r.t. the σ-finite measure λ. We also give a condition on the two measures (in terms of computability of the norm of a certain linear operator involving the two measures) which is sufficient to compute the derivative.","PeriodicalId":53933,"journal":{"name":"De Computis-Revista Espanola de Historia de la Contabilidad","volume":"47 1","pages":"132-141"},"PeriodicalIF":0.2000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Computability of the Radon-Nikodym Derivative\",\"authors\":\"M. Hoyrup, Cristobal Rojas, K. Weihrauch\",\"doi\":\"10.3233/COM-2012-005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a single application of the noncomputable operator EC, which transforms enumerations of sets (in N) to their characteristic functions, suffices to compute the Radon-Nikodym derivative dµ/dλ of a finite measure µ, which is absolutely continuous w.r.t. the σ-finite measure λ. We also give a condition on the two measures (in terms of computability of the norm of a certain linear operator involving the two measures) which is sufficient to compute the derivative.\",\"PeriodicalId\":53933,\"journal\":{\"name\":\"De Computis-Revista Espanola de Historia de la Contabilidad\",\"volume\":\"47 1\",\"pages\":\"132-141\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2011-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"De Computis-Revista Espanola de Historia de la Contabilidad\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/COM-2012-005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"De Computis-Revista Espanola de Historia de la Contabilidad","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/COM-2012-005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

我们证明了单次应用不可计算算子EC,将集合(N)的枚举变换为它们的特征函数,就足以计算绝对连续σ-有限测度λ的Radon-Nikodym导数dµ/dλ。我们还给出了这两个测度的一个条件(从涉及这两个测度的某线性算子的范数的可计算性来看),该条件足以计算导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computability of the Radon-Nikodym Derivative
We show that a single application of the noncomputable operator EC, which transforms enumerations of sets (in N) to their characteristic functions, suffices to compute the Radon-Nikodym derivative dµ/dλ of a finite measure µ, which is absolutely continuous w.r.t. the σ-finite measure λ. We also give a condition on the two measures (in terms of computability of the norm of a certain linear operator involving the two measures) which is sufficient to compute the derivative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信