围绕第一和第二不可数基数的更多可定义组合

IF 0.9 1区 数学 Q1 LOGIC
William Chan, Stephen Jackson, Nam Trang
{"title":"围绕第一和第二不可数基数的更多可定义组合","authors":"William Chan, Stephen Jackson, Nam Trang","doi":"10.1142/S0219061322500295","DOIUrl":null,"url":null,"abstract":"Assume ZF+AD. The following two continuity results for functions on certain subsets of P(ω1) and P(ω2) will be shown: For every < ω1 and function Φ : [ω1] → ω1, there is a club C ⊆ ω1 and a ζ < so that for all f, g ∈ [C] ∗, if f ζ = g ζ and sup(f) = sup(g), then Φ(f) = Φ(g). For every < ω2 and function Φ : [ω2] → ω2, there is an ω-club C ⊆ ω2 and a ζ < so that for all f, g ∈ [C] ∗, if f ζ = g ζ and sup(f) = sup(g), then Φ(f) = Φ(g). The previous two continuity results will be used to distinguish cardinals below P(ω2): |[ω1] | < |[ω1]1 |. |[ω2] | < |ω2]1 | < |[ω2]1 | < |[ω2]2 |. ¬(|[ω1]1 | ≤ [ω2] |). ¬(|[ω1]1 | ≤ ([ω2]1 |). [ω1] has the Jónsson property: That is, for every Φ : ([ω1]) → [ω1] , there is an X ⊆ [ω1] with |X| = |[ω1] | so that Φ[","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"14 1","pages":"2250029:1-2250029:31"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"More definable combinatorics around the first and second uncountable cardinals\",\"authors\":\"William Chan, Stephen Jackson, Nam Trang\",\"doi\":\"10.1142/S0219061322500295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assume ZF+AD. The following two continuity results for functions on certain subsets of P(ω1) and P(ω2) will be shown: For every < ω1 and function Φ : [ω1] → ω1, there is a club C ⊆ ω1 and a ζ < so that for all f, g ∈ [C] ∗, if f ζ = g ζ and sup(f) = sup(g), then Φ(f) = Φ(g). For every < ω2 and function Φ : [ω2] → ω2, there is an ω-club C ⊆ ω2 and a ζ < so that for all f, g ∈ [C] ∗, if f ζ = g ζ and sup(f) = sup(g), then Φ(f) = Φ(g). The previous two continuity results will be used to distinguish cardinals below P(ω2): |[ω1] | < |[ω1]1 |. |[ω2] | < |ω2]1 | < |[ω2]1 | < |[ω2]2 |. ¬(|[ω1]1 | ≤ [ω2] |). ¬(|[ω1]1 | ≤ ([ω2]1 |). [ω1] has the Jónsson property: That is, for every Φ : ([ω1]) → [ω1] , there is an X ⊆ [ω1] with |X| = |[ω1] | so that Φ[\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"14 1\",\"pages\":\"2250029:1-2250029:31\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219061322500295\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219061322500295","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 5

摘要

假设ZF +广告。对于P(ω1)和P(ω2)的某些子集上的函数,将给出以下两个连续性结果:对于每一个< ω1和函数Φ: [ω1]→ω1,存在一个俱乐部C≤ω1和a ζ,使得对于所有f, g∈[C]∗,如果f ζ = g ζ, sup(f) = sup(g),则Φ(f) = Φ(g)。对于每一个< ω2和函数Φ: [ω2]→ω2,存在一个ω-俱乐部C≤ω2和a ζ,使得对于所有f, g∈[C]∗,若f ζ = g ζ, sup(f) = sup(g),则Φ(f) = Φ(g)。前两个连续性结果将用于区分P(ω2)以下的基数:|[ω1] | < |[ω1]1 |。|[ω2] | < |ω2]1 | < |[ω2]1 | < |[ω2]2 |。¬(|[ω1]1 |≤[ω2] |)。¬(|[ω1]1 |≤([ω2]1 |)。[ω1]具有Jónsson性质:即对于每一个Φ:([ω1])→[ω1],存在一个|X| = |[ω1] |的X≠ω1,使得Φ[ω1]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More definable combinatorics around the first and second uncountable cardinals
Assume ZF+AD. The following two continuity results for functions on certain subsets of P(ω1) and P(ω2) will be shown: For every < ω1 and function Φ : [ω1] → ω1, there is a club C ⊆ ω1 and a ζ < so that for all f, g ∈ [C] ∗, if f ζ = g ζ and sup(f) = sup(g), then Φ(f) = Φ(g). For every < ω2 and function Φ : [ω2] → ω2, there is an ω-club C ⊆ ω2 and a ζ < so that for all f, g ∈ [C] ∗, if f ζ = g ζ and sup(f) = sup(g), then Φ(f) = Φ(g). The previous two continuity results will be used to distinguish cardinals below P(ω2): |[ω1] | < |[ω1]1 |. |[ω2] | < |ω2]1 | < |[ω2]1 | < |[ω2]2 |. ¬(|[ω1]1 | ≤ [ω2] |). ¬(|[ω1]1 | ≤ ([ω2]1 |). [ω1] has the Jónsson property: That is, for every Φ : ([ω1]) → [ω1] , there is an X ⊆ [ω1] with |X| = |[ω1] | so that Φ[
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信