利用广义卷积的大分子构象统计

G.S. Chirikjian
{"title":"利用广义卷积的大分子构象统计","authors":"G.S. Chirikjian","doi":"10.1016/S1089-3156(99)00086-0","DOIUrl":null,"url":null,"abstract":"<div><p><span>A new technique for generating statistical properties of chain-molecule conformations is presented. Conditional probability density functions (PDFs) describing the frequency of occurrence of the relative position and orientation of frames of reference affixed to selected backbone atoms serve as the inputs. Ensemble statistical properties of whole chains are generated by performing multiple generalized convolutions of these conditional PDFs. The formulation is shown to include classical theories such as the hindered and freely rotating chains, the Gaussian random walk, and the rotational isomeric state model. The convolution model is modified to include the long-range effects of excluded volume. An analytical example is used to illustrate the procedure. A general algorithm to calculate the ensemble properties of an arbitrary chain macromolecule is presented. In this algorithm, each of the </span><em>N</em> degrees of freedom (e.g. torsion angles) is assumed to have <em>K</em> discrete states. Using the convolution procedure, a chain is divided into <em>P</em> statistical units. The computational requirement is reduced from an <span><math><mtext>O</mtext></math></span>(<em>K</em><sup><em>N</em></sup>) calculation (corresponding to direct enumeration) to one which is <span><math><mtext>O</mtext><mtext>(P(C+K</mtext><msup><mi></mi><mn>N/P</mn></msup><mtext>))</mtext></math></span> where <em>C</em><span> is the computational complexity of the convolution procedure. In the case of a homopolymer, computations are reduced further to </span><span><math><mtext>O</mtext><mtext>(C</mtext><mspace></mspace><mtext>log</mtext><mtext>(P)+K</mtext><msup><mi></mi><mn>N/P</mn></msup><mtext>).</mtext></math></span></p></div>","PeriodicalId":100309,"journal":{"name":"Computational and Theoretical Polymer Science","volume":"11 2","pages":"Pages 143-153"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1089-3156(99)00086-0","citationCount":"21","resultStr":"{\"title\":\"Conformational statistics of macromolecules using generalized convolution\",\"authors\":\"G.S. Chirikjian\",\"doi\":\"10.1016/S1089-3156(99)00086-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A new technique for generating statistical properties of chain-molecule conformations is presented. Conditional probability density functions (PDFs) describing the frequency of occurrence of the relative position and orientation of frames of reference affixed to selected backbone atoms serve as the inputs. Ensemble statistical properties of whole chains are generated by performing multiple generalized convolutions of these conditional PDFs. The formulation is shown to include classical theories such as the hindered and freely rotating chains, the Gaussian random walk, and the rotational isomeric state model. The convolution model is modified to include the long-range effects of excluded volume. An analytical example is used to illustrate the procedure. A general algorithm to calculate the ensemble properties of an arbitrary chain macromolecule is presented. In this algorithm, each of the </span><em>N</em> degrees of freedom (e.g. torsion angles) is assumed to have <em>K</em> discrete states. Using the convolution procedure, a chain is divided into <em>P</em> statistical units. The computational requirement is reduced from an <span><math><mtext>O</mtext></math></span>(<em>K</em><sup><em>N</em></sup>) calculation (corresponding to direct enumeration) to one which is <span><math><mtext>O</mtext><mtext>(P(C+K</mtext><msup><mi></mi><mn>N/P</mn></msup><mtext>))</mtext></math></span> where <em>C</em><span> is the computational complexity of the convolution procedure. In the case of a homopolymer, computations are reduced further to </span><span><math><mtext>O</mtext><mtext>(C</mtext><mspace></mspace><mtext>log</mtext><mtext>(P)+K</mtext><msup><mi></mi><mn>N/P</mn></msup><mtext>).</mtext></math></span></p></div>\",\"PeriodicalId\":100309,\"journal\":{\"name\":\"Computational and Theoretical Polymer Science\",\"volume\":\"11 2\",\"pages\":\"Pages 143-153\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1089-3156(99)00086-0\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1089315699000860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089315699000860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

提出了一种生成链式分子构象统计性质的新方法。条件概率密度函数(pdf)描述固定在选定的主原子上的参照系的相对位置和方向出现的频率,作为输入。通过对这些条件pdf进行多次广义卷积,得到了全链的集合统计性质。该公式包括经典理论,如阻碍和自由旋转链,高斯随机游走和旋转异构状态模型。对卷积模型进行了修改,使其包含了排除体积的长期影响。用一个分析实例来说明该过程。提出了一种计算任意链大分子系综性质的通用算法。在该算法中,假设N个自由度(例如扭力角)中的每一个都有K个离散状态。利用卷积过程,将一条链划分为P个统计单位。计算需求从O(KN)计算(对应于直接枚举)减少到O(P(C+KN/P)),其中C是卷积过程的计算复杂度。在均聚物的情况下,计算进一步减少到O(Clog(P)+KN/P)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformational statistics of macromolecules using generalized convolution

A new technique for generating statistical properties of chain-molecule conformations is presented. Conditional probability density functions (PDFs) describing the frequency of occurrence of the relative position and orientation of frames of reference affixed to selected backbone atoms serve as the inputs. Ensemble statistical properties of whole chains are generated by performing multiple generalized convolutions of these conditional PDFs. The formulation is shown to include classical theories such as the hindered and freely rotating chains, the Gaussian random walk, and the rotational isomeric state model. The convolution model is modified to include the long-range effects of excluded volume. An analytical example is used to illustrate the procedure. A general algorithm to calculate the ensemble properties of an arbitrary chain macromolecule is presented. In this algorithm, each of the N degrees of freedom (e.g. torsion angles) is assumed to have K discrete states. Using the convolution procedure, a chain is divided into P statistical units. The computational requirement is reduced from an O(KN) calculation (corresponding to direct enumeration) to one which is O(P(C+KN/P)) where C is the computational complexity of the convolution procedure. In the case of a homopolymer, computations are reduced further to O(Clog(P)+KN/P).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信