基于riesz的体积LBP在野外情绪识别中的转导传递LDA

Yuan Zong, Wenming Zheng, Xiaohua Huang, Jingwei Yan, T. Zhang
{"title":"基于riesz的体积LBP在野外情绪识别中的转导传递LDA","authors":"Yuan Zong, Wenming Zheng, Xiaohua Huang, Jingwei Yan, T. Zhang","doi":"10.1145/2818346.2830584","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the method using Transductive Transfer Linear Discriminant Analysis (TTLDA) and Riesz-based Volume Local Binary Patterns (RVLBP) for image based static facial expression recognition challenge of the Emotion Recognition in the Wild Challenge (EmotiW 2015). The task of this challenge is to assign facial expression labels to frames of some movies containing a face under the real word environment. In our method, we firstly employ a multi-scale image partition scheme to divide each face image into some image blocks and use RVLBP features extracted from each block to describe each facial image. Then, we adopt the TTLDA approach based on RVLBP to cope with the expression recognition task. The experiments on the testing data of SFEW 2.0 database, which is used for image based static facial expression challenge, demonstrate that our method achieves the accuracy of 50%. This result has a 10.87% improvement over the baseline provided by this challenge organizer.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Transductive Transfer LDA with Riesz-based Volume LBP for Emotion Recognition in The Wild\",\"authors\":\"Yuan Zong, Wenming Zheng, Xiaohua Huang, Jingwei Yan, T. Zhang\",\"doi\":\"10.1145/2818346.2830584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the method using Transductive Transfer Linear Discriminant Analysis (TTLDA) and Riesz-based Volume Local Binary Patterns (RVLBP) for image based static facial expression recognition challenge of the Emotion Recognition in the Wild Challenge (EmotiW 2015). The task of this challenge is to assign facial expression labels to frames of some movies containing a face under the real word environment. In our method, we firstly employ a multi-scale image partition scheme to divide each face image into some image blocks and use RVLBP features extracted from each block to describe each facial image. Then, we adopt the TTLDA approach based on RVLBP to cope with the expression recognition task. The experiments on the testing data of SFEW 2.0 database, which is used for image based static facial expression challenge, demonstrate that our method achieves the accuracy of 50%. This result has a 10.87% improvement over the baseline provided by this challenge organizer.\",\"PeriodicalId\":20486,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2830584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2830584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们提出了使用转导传递线性判别分析(TTLDA)和基于riesz的体积局部二值模式(RVLBP)的方法来进行基于图像的静态面部表情识别挑战的情绪识别在野生挑战(EmotiW 2015)。这个挑战的任务是在真实的文字环境下为一些包含人脸的电影帧分配面部表情标签。该方法首先采用一种多尺度图像分割方案,将人脸图像分成若干图像块,并利用从每个图像块中提取的RVLBP特征来描述每幅人脸图像。然后,我们采用基于RVLBP的TTLDA方法来处理表情识别任务。在基于图像的静态面部表情挑战的SFEW 2.0数据库测试数据上进行的实验表明,我们的方法达到了50%的准确率。这个结果比这个挑战组织者提供的基线提高了10.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transductive Transfer LDA with Riesz-based Volume LBP for Emotion Recognition in The Wild
In this paper, we propose the method using Transductive Transfer Linear Discriminant Analysis (TTLDA) and Riesz-based Volume Local Binary Patterns (RVLBP) for image based static facial expression recognition challenge of the Emotion Recognition in the Wild Challenge (EmotiW 2015). The task of this challenge is to assign facial expression labels to frames of some movies containing a face under the real word environment. In our method, we firstly employ a multi-scale image partition scheme to divide each face image into some image blocks and use RVLBP features extracted from each block to describe each facial image. Then, we adopt the TTLDA approach based on RVLBP to cope with the expression recognition task. The experiments on the testing data of SFEW 2.0 database, which is used for image based static facial expression challenge, demonstrate that our method achieves the accuracy of 50%. This result has a 10.87% improvement over the baseline provided by this challenge organizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信