新型砂团处理防止出砂,提高油井产能:里海海上案例研究

Ruslan Kalabayev, E. Sukhova, Gadam Rovshenov, G. Gurbanov, Joel Gil, Roman Kontarev
{"title":"新型砂团处理防止出砂,提高油井产能:里海海上案例研究","authors":"Ruslan Kalabayev, E. Sukhova, Gadam Rovshenov, G. Gurbanov, Joel Gil, Roman Kontarev","doi":"10.2118/204714-ms","DOIUrl":null,"url":null,"abstract":"\n Many oil producing wells, globally, experience sand production problems when reservoir rock consists of unconsolidated sand. Several wells in the Dzheitune oil field are experiencing a similar challenge. Production of formation fines and sand has caused accumulation of fill and wellbore equipment failures and has necessitated periodical and costly coiled tubing-assisted wellbore cleanout operations. A novel chemical treatment tested in the oil field to tackle the challenge led to positive results.\n A well with a relatively short target perforation interval was selected as a candidate for the trial sand conglomeration treatment to avoid any uncertainties related to zone coverage. Pre-requisite sand agglomeration and chemical-crude oil compatibility laboratory studies were carried out to optimize the main system and preflush fluid formulations. Once the laboratory testing was complete, a step-rate test was performed to determine the maximum injection rate below formation fracturing pressure. The chemical systems were prepared using standard blending equipment. The preflush fluid was injected to prepare the treated zone. The main fluid was then injected into the reservoir in several cycles at matrix rate by a bullheading process. Upon completion of the treatment, the well was shut in for several days for optimal agglomeration (conglomeration) before the well was slowly put on production.\n A long-term increase in the productivity index and sand-free flow rate with no damage to the wellbore or the reservoir were observed. The technology demonstrated its efficiency in preventing and controlling sand production; avoiding frequent, time-consuming, costly wellbore cleanout operations; and producing hydrocarbons at reduced drawdown pressure.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Sand Conglomeration Treatment Prevents Sand Production and Enhances Well Productivity: Offshore Caspian Case Study\",\"authors\":\"Ruslan Kalabayev, E. Sukhova, Gadam Rovshenov, G. Gurbanov, Joel Gil, Roman Kontarev\",\"doi\":\"10.2118/204714-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Many oil producing wells, globally, experience sand production problems when reservoir rock consists of unconsolidated sand. Several wells in the Dzheitune oil field are experiencing a similar challenge. Production of formation fines and sand has caused accumulation of fill and wellbore equipment failures and has necessitated periodical and costly coiled tubing-assisted wellbore cleanout operations. A novel chemical treatment tested in the oil field to tackle the challenge led to positive results.\\n A well with a relatively short target perforation interval was selected as a candidate for the trial sand conglomeration treatment to avoid any uncertainties related to zone coverage. Pre-requisite sand agglomeration and chemical-crude oil compatibility laboratory studies were carried out to optimize the main system and preflush fluid formulations. Once the laboratory testing was complete, a step-rate test was performed to determine the maximum injection rate below formation fracturing pressure. The chemical systems were prepared using standard blending equipment. The preflush fluid was injected to prepare the treated zone. The main fluid was then injected into the reservoir in several cycles at matrix rate by a bullheading process. Upon completion of the treatment, the well was shut in for several days for optimal agglomeration (conglomeration) before the well was slowly put on production.\\n A long-term increase in the productivity index and sand-free flow rate with no damage to the wellbore or the reservoir were observed. The technology demonstrated its efficiency in preventing and controlling sand production; avoiding frequent, time-consuming, costly wellbore cleanout operations; and producing hydrocarbons at reduced drawdown pressure.\",\"PeriodicalId\":11320,\"journal\":{\"name\":\"Day 3 Tue, November 30, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Tue, November 30, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204714-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204714-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在全球范围内,当储层岩石由未固结砂组成时,许多油井都会遇到出砂问题。Dzheitune油田的几口井也面临着类似的挑战。地层细砂的产生造成了充填物的堆积和井筒设备的故障,需要定期进行昂贵的连续油管辅助井筒清洗作业。为了解决这一难题,一种新型的化学处理方法在油田进行了测试,取得了积极的效果。选择目标射孔间隔相对较短的一口井作为试验砂团处理的候选井,以避免与层覆盖有关的任何不确定性。为了优化主系统和预冲液配方,进行了必要的砂团聚和化学-原油相容性实验室研究。实验室测试完成后,进行阶梯速率测试,以确定地层压裂压力下的最大注入速率。化学体系是用标准的混合设备制备的。注入预冲液准备处理区。然后,主流体通过压头过程以基质速率分几个循环注入到储层中。处理完成后,井被关井数天,以获得最佳的团聚(凝聚),然后慢慢投入生产。在不损害井筒或储层的情况下,长期提高了产能指数和无砂流量。该技术在防砂防砂方面取得了良好的效果;避免频繁、耗时、昂贵的井筒清洗作业;在降低压降的情况下生产碳氢化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Sand Conglomeration Treatment Prevents Sand Production and Enhances Well Productivity: Offshore Caspian Case Study
Many oil producing wells, globally, experience sand production problems when reservoir rock consists of unconsolidated sand. Several wells in the Dzheitune oil field are experiencing a similar challenge. Production of formation fines and sand has caused accumulation of fill and wellbore equipment failures and has necessitated periodical and costly coiled tubing-assisted wellbore cleanout operations. A novel chemical treatment tested in the oil field to tackle the challenge led to positive results. A well with a relatively short target perforation interval was selected as a candidate for the trial sand conglomeration treatment to avoid any uncertainties related to zone coverage. Pre-requisite sand agglomeration and chemical-crude oil compatibility laboratory studies were carried out to optimize the main system and preflush fluid formulations. Once the laboratory testing was complete, a step-rate test was performed to determine the maximum injection rate below formation fracturing pressure. The chemical systems were prepared using standard blending equipment. The preflush fluid was injected to prepare the treated zone. The main fluid was then injected into the reservoir in several cycles at matrix rate by a bullheading process. Upon completion of the treatment, the well was shut in for several days for optimal agglomeration (conglomeration) before the well was slowly put on production. A long-term increase in the productivity index and sand-free flow rate with no damage to the wellbore or the reservoir were observed. The technology demonstrated its efficiency in preventing and controlling sand production; avoiding frequent, time-consuming, costly wellbore cleanout operations; and producing hydrocarbons at reduced drawdown pressure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信