DIBS:数据集成基准套件

A. Cabrera, Clayton J. Faber, Kyle Cepeda, Robert Derber, Cooper Epstein, Jason Zheng, R. Cytron, R. Chamberlain
{"title":"DIBS:数据集成基准套件","authors":"A. Cabrera, Clayton J. Faber, Kyle Cepeda, Robert Derber, Cooper Epstein, Jason Zheng, R. Cytron, R. Chamberlain","doi":"10.1145/3185768.3186307","DOIUrl":null,"url":null,"abstract":"As the generation of data becomes more prolific, the amount of time and resources necessary to perform analyses on these data increases. What is less understood, however, is the data preprocessing steps that must be applied before any meaningful analysis can begin. This problem of taking data in some initial form and transforming it into a desired one is known as data integration. Here, we introduce the Data Integration Benchmarking Suite (DIBS), a suite of applications that are representative of data integration workloads across many disciplines. We apply a comprehensive characterization to these applications to better understand the general behavior of data integration tasks. As a result of our benchmark suite and characterization methods, we offer insight regarding data integration tasks that will guide other researchers designing solutions in this area.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"2010 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"DIBS: A Data Integration Benchmark Suite\",\"authors\":\"A. Cabrera, Clayton J. Faber, Kyle Cepeda, Robert Derber, Cooper Epstein, Jason Zheng, R. Cytron, R. Chamberlain\",\"doi\":\"10.1145/3185768.3186307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the generation of data becomes more prolific, the amount of time and resources necessary to perform analyses on these data increases. What is less understood, however, is the data preprocessing steps that must be applied before any meaningful analysis can begin. This problem of taking data in some initial form and transforming it into a desired one is known as data integration. Here, we introduce the Data Integration Benchmarking Suite (DIBS), a suite of applications that are representative of data integration workloads across many disciplines. We apply a comprehensive characterization to these applications to better understand the general behavior of data integration tasks. As a result of our benchmark suite and characterization methods, we offer insight regarding data integration tasks that will guide other researchers designing solutions in this area.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"2010 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3185768.3186307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3185768.3186307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

随着数据的生成越来越多,对这些数据执行分析所需的时间和资源也在增加。然而,人们不太了解的是,在任何有意义的分析开始之前必须应用的数据预处理步骤。这种以某种初始形式获取数据并将其转换为所需形式的问题称为数据集成。在这里,我们介绍数据集成基准套件(Data Integration Benchmarking Suite, DIBS),这是一组应用程序,代表了跨许多学科的数据集成工作负载。我们对这些应用程序进行了全面的描述,以便更好地理解数据集成任务的一般行为。由于我们的基准套件和表征方法,我们提供了有关数据集成任务的见解,这将指导其他研究人员在该领域设计解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DIBS: A Data Integration Benchmark Suite
As the generation of data becomes more prolific, the amount of time and resources necessary to perform analyses on these data increases. What is less understood, however, is the data preprocessing steps that must be applied before any meaningful analysis can begin. This problem of taking data in some initial form and transforming it into a desired one is known as data integration. Here, we introduce the Data Integration Benchmarking Suite (DIBS), a suite of applications that are representative of data integration workloads across many disciplines. We apply a comprehensive characterization to these applications to better understand the general behavior of data integration tasks. As a result of our benchmark suite and characterization methods, we offer insight regarding data integration tasks that will guide other researchers designing solutions in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信