{"title":"带股利的欧美期权的有限差分数值解","authors":"K. N. Uprety, G. Panday","doi":"10.3126/sw.v13i13.30540","DOIUrl":null,"url":null,"abstract":"Numerical methods form an important part of the pricing of financial derivatives where there is no closed form analytical formula. Black-Scholes equation is a well known partial differential equation in financial mathematics. In this paper, we have studied the numerical solutions of the Black-Scholes equation for European options (Call and Put) as well as American options with dividends. We have used different approximate to discretize the partial differential equation in space and explicit (Forward Euler’s), fully implicit with projected Successive Over-Relaxation (SOR) algorithm and Crank-Nicolson scheme for time stepping. We have implemented and tested the methods in MATLAB. Finally, some numerical results have been presented and the effects of dividend payments on option pricing have also been considered.","PeriodicalId":21637,"journal":{"name":"Scientific World","volume":"19 1","pages":"55-61"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Solution of European and American Option with Dividends using Finite Difference Methods\",\"authors\":\"K. N. Uprety, G. Panday\",\"doi\":\"10.3126/sw.v13i13.30540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical methods form an important part of the pricing of financial derivatives where there is no closed form analytical formula. Black-Scholes equation is a well known partial differential equation in financial mathematics. In this paper, we have studied the numerical solutions of the Black-Scholes equation for European options (Call and Put) as well as American options with dividends. We have used different approximate to discretize the partial differential equation in space and explicit (Forward Euler’s), fully implicit with projected Successive Over-Relaxation (SOR) algorithm and Crank-Nicolson scheme for time stepping. We have implemented and tested the methods in MATLAB. Finally, some numerical results have been presented and the effects of dividend payments on option pricing have also been considered.\",\"PeriodicalId\":21637,\"journal\":{\"name\":\"Scientific World\",\"volume\":\"19 1\",\"pages\":\"55-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/sw.v13i13.30540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/sw.v13i13.30540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Solution of European and American Option with Dividends using Finite Difference Methods
Numerical methods form an important part of the pricing of financial derivatives where there is no closed form analytical formula. Black-Scholes equation is a well known partial differential equation in financial mathematics. In this paper, we have studied the numerical solutions of the Black-Scholes equation for European options (Call and Put) as well as American options with dividends. We have used different approximate to discretize the partial differential equation in space and explicit (Forward Euler’s), fully implicit with projected Successive Over-Relaxation (SOR) algorithm and Crank-Nicolson scheme for time stepping. We have implemented and tested the methods in MATLAB. Finally, some numerical results have been presented and the effects of dividend payments on option pricing have also been considered.