实数Cayley-Dickson代数的正交图。第二部分:基元对上的子图

S. Zhilina
{"title":"实数Cayley-Dickson代数的正交图。第二部分:基元对上的子图","authors":"S. Zhilina","doi":"10.1142/S0218196721500338","DOIUrl":null,"url":null,"abstract":"We consider zero divisors of an arbitrary real Cayley–Dickson algebra such that their components are both standard basis elements. We construct inductively the orthogonality graph on these elements. Then we show that, if we restrict our attention to at least [Formula: see text]-dimensional algebras, two algebras are isomorphic if and only if their graphs are isomorphic. We also provide an algorithm to retrieve the Cayley–Dickson parameters of an algebra from its graph.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"5 1","pages":"691-725"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Orthogonality graphs of real Cayley-Dickson algebras. Part II: The subgraph on pairs of basis elements\",\"authors\":\"S. Zhilina\",\"doi\":\"10.1142/S0218196721500338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider zero divisors of an arbitrary real Cayley–Dickson algebra such that their components are both standard basis elements. We construct inductively the orthogonality graph on these elements. Then we show that, if we restrict our attention to at least [Formula: see text]-dimensional algebras, two algebras are isomorphic if and only if their graphs are isomorphic. We also provide an algorithm to retrieve the Cayley–Dickson parameters of an algebra from its graph.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"5 1\",\"pages\":\"691-725\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218196721500338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218196721500338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑任意实Cayley-Dickson代数的零因子,使得它们的分量都是标准基元素。我们在这些元素上归纳地构造了正交图。然后我们证明,如果我们把注意力至少限制在[公式:见文本]维代数上,两个代数是同构的当且仅当它们的图是同构的。我们还提供了一种从代数图中检索Cayley-Dickson参数的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonality graphs of real Cayley-Dickson algebras. Part II: The subgraph on pairs of basis elements
We consider zero divisors of an arbitrary real Cayley–Dickson algebra such that their components are both standard basis elements. We construct inductively the orthogonality graph on these elements. Then we show that, if we restrict our attention to at least [Formula: see text]-dimensional algebras, two algebras are isomorphic if and only if their graphs are isomorphic. We also provide an algorithm to retrieve the Cayley–Dickson parameters of an algebra from its graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信