{"title":"图的对称嵌入","authors":"D.F. Robinson","doi":"10.1016/S0021-9800(70)80092-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be a graph, <em>G</em>′ an embedding of <em>G</em> as a straight 1-complex in <em>R</em><sup>n</sup>, the real coordinate space of dimension <em>n</em>; let Φ be a group of transformations mapping <em>R<sup>n</sup></em> to itself. If for every automorphism α of <em>G</em> we can find a member of Φ mapping <em>G</em>′ onto itself in such a way that it induces α in <em>G</em>′, we say that <em>G</em>′ is a Φ-symmetric embedding of <em>G</em>. In particular this paper discusses conditions for the existence of such an embedding when Φ is the group of autohomeomorphisms of <em>R<sup>n</sup></em> or the group of invertible linear transformations in <em>R<sup>n</sup></em>, and the graph is the complete graph <em>K<sub>m</sub></em>.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 4","pages":"Pages 377-400"},"PeriodicalIF":0.0000,"publicationDate":"1970-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80092-8","citationCount":"3","resultStr":"{\"title\":\"Symmetric embeddings of graphs\",\"authors\":\"D.F. Robinson\",\"doi\":\"10.1016/S0021-9800(70)80092-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>G</em> be a graph, <em>G</em>′ an embedding of <em>G</em> as a straight 1-complex in <em>R</em><sup>n</sup>, the real coordinate space of dimension <em>n</em>; let Φ be a group of transformations mapping <em>R<sup>n</sup></em> to itself. If for every automorphism α of <em>G</em> we can find a member of Φ mapping <em>G</em>′ onto itself in such a way that it induces α in <em>G</em>′, we say that <em>G</em>′ is a Φ-symmetric embedding of <em>G</em>. In particular this paper discusses conditions for the existence of such an embedding when Φ is the group of autohomeomorphisms of <em>R<sup>n</sup></em> or the group of invertible linear transformations in <em>R<sup>n</sup></em>, and the graph is the complete graph <em>K<sub>m</sub></em>.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 4\",\"pages\":\"Pages 377-400\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80092-8\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let G be a graph, G′ an embedding of G as a straight 1-complex in Rn, the real coordinate space of dimension n; let Φ be a group of transformations mapping Rn to itself. If for every automorphism α of G we can find a member of Φ mapping G′ onto itself in such a way that it induces α in G′, we say that G′ is a Φ-symmetric embedding of G. In particular this paper discusses conditions for the existence of such an embedding when Φ is the group of autohomeomorphisms of Rn or the group of invertible linear transformations in Rn, and the graph is the complete graph Km.