在平面运动学中的一些直线轨迹上

O. Bottema (Professor)
{"title":"在平面运动学中的一些直线轨迹上","authors":"O. Bottema (Professor)","doi":"10.1016/0022-2569(70)90006-6","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years generalizations of the Ball and Burmester problems of the following type have been considered: if a plane q moves in a prescribed manner with respect to a fixed plane Q, what is the locus of a point in q such that up to seven positions lie on a conic in Q. In this paper we derive the locus of a line in q such that either its five positions in Q are tangent to a parabola, or that its six positions are tangent to a conic. The loci are respectively of the second and the fourth class.</p></div>","PeriodicalId":100802,"journal":{"name":"Journal of Mechanisms","volume":"5 4","pages":"Pages 541-548"},"PeriodicalIF":0.0000,"publicationDate":"1970-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0022-2569(70)90006-6","citationCount":"3","resultStr":"{\"title\":\"On some loci of lines in plane kinematics\",\"authors\":\"O. Bottema (Professor)\",\"doi\":\"10.1016/0022-2569(70)90006-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years generalizations of the Ball and Burmester problems of the following type have been considered: if a plane q moves in a prescribed manner with respect to a fixed plane Q, what is the locus of a point in q such that up to seven positions lie on a conic in Q. In this paper we derive the locus of a line in q such that either its five positions in Q are tangent to a parabola, or that its six positions are tangent to a conic. The loci are respectively of the second and the fourth class.</p></div>\",\"PeriodicalId\":100802,\"journal\":{\"name\":\"Journal of Mechanisms\",\"volume\":\"5 4\",\"pages\":\"Pages 541-548\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0022-2569(70)90006-6\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0022256970900066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0022256970900066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来概括的球和Burmester问题unfpa以下类型被认为是:如果飞机问移动以规定的方式对一个固定的平面问,在问点的轨迹是什么,这样7的位置躺在问:在本文中,我们推导圆锥的轨迹线在问这样问的五个位置切一个抛物线,或六个位置,它是一个二次曲线切线。这些位点分别属于第二类和第四类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some loci of lines in plane kinematics

In recent years generalizations of the Ball and Burmester problems of the following type have been considered: if a plane q moves in a prescribed manner with respect to a fixed plane Q, what is the locus of a point in q such that up to seven positions lie on a conic in Q. In this paper we derive the locus of a line in q such that either its five positions in Q are tangent to a parabola, or that its six positions are tangent to a conic. The loci are respectively of the second and the fourth class.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信