{"title":"虚二次域阿贝尔扩展的等变Tamagawa数猜想","authors":"Dominik Bullach, Martin Hofer","doi":"10.4171/dm/907","DOIUrl":null,"url":null,"abstract":"We prove the Iwasawa-theoretic version of a Conjecture of Mazur--Rubin and Sano in the case of elliptic units. This allows us to derive the $p$-part of the equivariant Tamagawa number conjecture at $s = 0$ for abelian extensions of imaginary quadratic fields in the semi-simple case and, provided that a standard $\\mu$-vanishing hypothesis is satisfied, also in the general case.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"52 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields\",\"authors\":\"Dominik Bullach, Martin Hofer\",\"doi\":\"10.4171/dm/907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the Iwasawa-theoretic version of a Conjecture of Mazur--Rubin and Sano in the case of elliptic units. This allows us to derive the $p$-part of the equivariant Tamagawa number conjecture at $s = 0$ for abelian extensions of imaginary quadratic fields in the semi-simple case and, provided that a standard $\\\\mu$-vanishing hypothesis is satisfied, also in the general case.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/907\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/907","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields
We prove the Iwasawa-theoretic version of a Conjecture of Mazur--Rubin and Sano in the case of elliptic units. This allows us to derive the $p$-part of the equivariant Tamagawa number conjecture at $s = 0$ for abelian extensions of imaginary quadratic fields in the semi-simple case and, provided that a standard $\mu$-vanishing hypothesis is satisfied, also in the general case.
期刊介绍:
DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented
Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.