包含广义分数阶积分的f -凸函数的Hermite-Hadamard型不等式

H. Budak, M. Ali, A. Kashuri
{"title":"包含广义分数阶积分的f -凸函数的Hermite-Hadamard型不等式","authors":"H. Budak, M. Ali, A. Kashuri","doi":"10.24193/subbmath.2022.1.11","DOIUrl":null,"url":null,"abstract":"\"In this paper, we rstly summarize some properties of the family F and F-convex functions which are de ned by B. Samet. Utilizing generalized fractional integrals new Hermite-Hadamard type inequalities for F-convex functions have been provided. Some results given earlier works are also as special cases of our results.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hermite-Hadamard type inequalities for F-convex functions involving generalized fractional integrals\",\"authors\":\"H. Budak, M. Ali, A. Kashuri\",\"doi\":\"10.24193/subbmath.2022.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, we rstly summarize some properties of the family F and F-convex functions which are de ned by B. Samet. Utilizing generalized fractional integrals new Hermite-Hadamard type inequalities for F-convex functions have been provided. Some results given earlier works are also as special cases of our results.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先总结了B. Samet提出的F族和F-凸函数的一些性质。利用广义分数积分,给出了f -凸函数的新的Hermite-Hadamard型不等式。前人给出的一些结果也可以作为我们研究结果的特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hermite-Hadamard type inequalities for F-convex functions involving generalized fractional integrals
"In this paper, we rstly summarize some properties of the family F and F-convex functions which are de ned by B. Samet. Utilizing generalized fractional integrals new Hermite-Hadamard type inequalities for F-convex functions have been provided. Some results given earlier works are also as special cases of our results."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
31 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信