{"title":"包含广义分数阶积分的f -凸函数的Hermite-Hadamard型不等式","authors":"H. Budak, M. Ali, A. Kashuri","doi":"10.24193/subbmath.2022.1.11","DOIUrl":null,"url":null,"abstract":"\"In this paper, we rstly summarize some properties of the family F and F-convex functions which are de ned by B. Samet. Utilizing generalized fractional integrals new Hermite-Hadamard type inequalities for F-convex functions have been provided. Some results given earlier works are also as special cases of our results.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hermite-Hadamard type inequalities for F-convex functions involving generalized fractional integrals\",\"authors\":\"H. Budak, M. Ali, A. Kashuri\",\"doi\":\"10.24193/subbmath.2022.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"In this paper, we rstly summarize some properties of the family F and F-convex functions which are de ned by B. Samet. Utilizing generalized fractional integrals new Hermite-Hadamard type inequalities for F-convex functions have been provided. Some results given earlier works are also as special cases of our results.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2022.1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2022.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hermite-Hadamard type inequalities for F-convex functions involving generalized fractional integrals
"In this paper, we rstly summarize some properties of the family F and F-convex functions which are de ned by B. Samet. Utilizing generalized fractional integrals new Hermite-Hadamard type inequalities for F-convex functions have been provided. Some results given earlier works are also as special cases of our results."