基于深度q -网络和粒子群优化的多级互补金属氧化物半导体运算放大器自动调整尺寸

Shuai Ren, G. Shi, Yaoyao Ye
{"title":"基于深度q -网络和粒子群优化的多级互补金属氧化物半导体运算放大器自动调整尺寸","authors":"Shuai Ren, G. Shi, Yaoyao Ye","doi":"10.1109/ATEEE54283.2021.00012","DOIUrl":null,"url":null,"abstract":"This paper presents a study on the application of a deep Q-network combined with particle swarm optimization in the automatic sizing of multi-stage complementary metal oxide semiconductor operational amplifiers. Our main novelty is to combine deep Q-network and particle swarm optimization to achieve fast convergence and optimal circuit performance. The combined method takes advantage of the global search capability by deep Q-network and the local search capability by particle swarm optimization, enabling shortened training time cost needed by applying a deep Q-network only. It is demonstrated that the combined method can work out better operational amplifier device sizes in our experiment. The two-stage simple Miller compensation circuit reaches all the design targets in an average time of 0.32 h, and the three-stage circuits in this paper reach all the design targets within 0.68 h. Comparisons of using our method with other sizing methods such as genetic algorithm, particle swarm optimization only, and deep Q-network only are reported.","PeriodicalId":62545,"journal":{"name":"电工电能新技术","volume":"79 1","pages":"15-20"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-sizing of Multi-stage Complementary Metal Oxide Semiconductor Operational Amplifiers by Deep Q-Network and Particle Swarm Optimization\",\"authors\":\"Shuai Ren, G. Shi, Yaoyao Ye\",\"doi\":\"10.1109/ATEEE54283.2021.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study on the application of a deep Q-network combined with particle swarm optimization in the automatic sizing of multi-stage complementary metal oxide semiconductor operational amplifiers. Our main novelty is to combine deep Q-network and particle swarm optimization to achieve fast convergence and optimal circuit performance. The combined method takes advantage of the global search capability by deep Q-network and the local search capability by particle swarm optimization, enabling shortened training time cost needed by applying a deep Q-network only. It is demonstrated that the combined method can work out better operational amplifier device sizes in our experiment. The two-stage simple Miller compensation circuit reaches all the design targets in an average time of 0.32 h, and the three-stage circuits in this paper reach all the design targets within 0.68 h. Comparisons of using our method with other sizing methods such as genetic algorithm, particle swarm optimization only, and deep Q-network only are reported.\",\"PeriodicalId\":62545,\"journal\":{\"name\":\"电工电能新技术\",\"volume\":\"79 1\",\"pages\":\"15-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电工电能新技术\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/ATEEE54283.2021.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电工电能新技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ATEEE54283.2021.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了结合粒子群优化的深度q网络在多级互补金属氧化物半导体运算放大器自动定尺中的应用。我们的主要创新点是将深度q网络和粒子群优化相结合,以实现快速收敛和最佳电路性能。该组合方法利用了深度q网络的全局搜索能力和粒子群优化的局部搜索能力,缩短了只使用深度q网络的训练时间。实验结果表明,该方法可以计算出较好的运放器件尺寸。两级简单米勒补偿电路平均在0.32 h内达到所有设计目标,三级电路在0.68 h内达到所有设计目标。并与遗传算法、纯粒子群优化和纯深度q -网络等其他分级方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-sizing of Multi-stage Complementary Metal Oxide Semiconductor Operational Amplifiers by Deep Q-Network and Particle Swarm Optimization
This paper presents a study on the application of a deep Q-network combined with particle swarm optimization in the automatic sizing of multi-stage complementary metal oxide semiconductor operational amplifiers. Our main novelty is to combine deep Q-network and particle swarm optimization to achieve fast convergence and optimal circuit performance. The combined method takes advantage of the global search capability by deep Q-network and the local search capability by particle swarm optimization, enabling shortened training time cost needed by applying a deep Q-network only. It is demonstrated that the combined method can work out better operational amplifier device sizes in our experiment. The two-stage simple Miller compensation circuit reaches all the design targets in an average time of 0.32 h, and the three-stage circuits in this paper reach all the design targets within 0.68 h. Comparisons of using our method with other sizing methods such as genetic algorithm, particle swarm optimization only, and deep Q-network only are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
3166
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信