利用x射线图像检测COVID-19的AI驱动解决方案

Riya Singh, Shivani Wadkar, Semil Jain, Manisha Dodeja
{"title":"利用x射线图像检测COVID-19的AI驱动解决方案","authors":"Riya Singh, Shivani Wadkar, Semil Jain, Manisha Dodeja","doi":"10.1109/ICTS52701.2021.9608932","DOIUrl":null,"url":null,"abstract":"COVID-19 is a contagious and highly infectious disease which has led to an ongoing pandemic. Researchers and scientists across the world, across various fields, are exploring new methods and approaches to fight against the disease since its outbreak. A study of the COVID-19 infected patients suggests that these patients are affected with the lung infection. In this paper, we have leveraged several deep learning models using the concept of transfer learning. We have also designed a custom convolutional neural network for the purpose of feature extraction and then for effective categorization into pneumonia, covid and normal classes, several classification methods from the machine learning domain such as SVM, Random Forest and softmax regression were utilised. The custom convolutional neural network with the final layer as the dense layer with three units employing softmax activation function achieved a significant accuracy of 94.6 % which was comparable to the accuracy achieved by the transfer learning models. In order to ensure the results are not biased in favour of one class we have utilized a balanced dataset containing 1345 X-ray images for each class - pneumonia, covid, normal in order to demonstrate these experiments.","PeriodicalId":6738,"journal":{"name":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","volume":"46 1","pages":"123-128"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI Driven Solution for the Detection of COVID-19 Using X-ray images\",\"authors\":\"Riya Singh, Shivani Wadkar, Semil Jain, Manisha Dodeja\",\"doi\":\"10.1109/ICTS52701.2021.9608932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 is a contagious and highly infectious disease which has led to an ongoing pandemic. Researchers and scientists across the world, across various fields, are exploring new methods and approaches to fight against the disease since its outbreak. A study of the COVID-19 infected patients suggests that these patients are affected with the lung infection. In this paper, we have leveraged several deep learning models using the concept of transfer learning. We have also designed a custom convolutional neural network for the purpose of feature extraction and then for effective categorization into pneumonia, covid and normal classes, several classification methods from the machine learning domain such as SVM, Random Forest and softmax regression were utilised. The custom convolutional neural network with the final layer as the dense layer with three units employing softmax activation function achieved a significant accuracy of 94.6 % which was comparable to the accuracy achieved by the transfer learning models. In order to ensure the results are not biased in favour of one class we have utilized a balanced dataset containing 1345 X-ray images for each class - pneumonia, covid, normal in order to demonstrate these experiments.\",\"PeriodicalId\":6738,\"journal\":{\"name\":\"2021 13th International Conference on Information & Communication Technology and System (ICTS)\",\"volume\":\"46 1\",\"pages\":\"123-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Information & Communication Technology and System (ICTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTS52701.2021.9608932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS52701.2021.9608932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19是一种传染性和高度传染性疾病,已导致持续的大流行。自疫情爆发以来,世界各地各个领域的研究人员和科学家都在探索新的方法和途径来对抗这种疾病。一项对COVID-19感染患者的研究表明,这些患者患有肺部感染。在本文中,我们利用迁移学习的概念利用了几个深度学习模型。我们还设计了一个自定义的卷积神经网络,用于特征提取,然后有效地分类为肺炎,covid和正常类,使用了机器学习领域的几种分类方法,如SVM, Random Forest和softmax回归。自定义卷积神经网络以最后一层为密集层,采用softmax激活函数的三个单元,达到了94.6%的显著准确率,与迁移学习模型的准确率相当。为了确保结果不偏向于某一类,我们使用了一个平衡的数据集,其中包含每个类别的1345张x射线图像-肺炎,covid,正常,以演示这些实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI Driven Solution for the Detection of COVID-19 Using X-ray images
COVID-19 is a contagious and highly infectious disease which has led to an ongoing pandemic. Researchers and scientists across the world, across various fields, are exploring new methods and approaches to fight against the disease since its outbreak. A study of the COVID-19 infected patients suggests that these patients are affected with the lung infection. In this paper, we have leveraged several deep learning models using the concept of transfer learning. We have also designed a custom convolutional neural network for the purpose of feature extraction and then for effective categorization into pneumonia, covid and normal classes, several classification methods from the machine learning domain such as SVM, Random Forest and softmax regression were utilised. The custom convolutional neural network with the final layer as the dense layer with three units employing softmax activation function achieved a significant accuracy of 94.6 % which was comparable to the accuracy achieved by the transfer learning models. In order to ensure the results are not biased in favour of one class we have utilized a balanced dataset containing 1345 X-ray images for each class - pneumonia, covid, normal in order to demonstrate these experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信