具有相关误差的空间回归模型预测新方法

A. V. Vecchia
{"title":"具有相关误差的空间回归模型预测新方法","authors":"A. V. Vecchia","doi":"10.1111/J.2517-6161.1992.TB01454.X","DOIUrl":null,"url":null,"abstract":"SUMMARY This paper deals with minimum mean-squared error, unbiased linear interpolation of a continuous domain spatial process based on a sparse set of irregularly spaced observations. The process is assumed to be governed by a linear regression model with errors that follow a second-order stationary Gaussian random field. A new method of prediction is developed that is compatible with the parameter estimation procedures of Vecchia. The result is a new likelihood-based method for joint parameter estimation and prediction that can be applied to large or small data sets with irregularly spaced data. Simulated and observed data sets are analysed to illustrate the methods.","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"20 1","pages":"813-830"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A New Method of Prediction for Spatial Regression Models with Correlated Errors\",\"authors\":\"A. V. Vecchia\",\"doi\":\"10.1111/J.2517-6161.1992.TB01454.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMMARY This paper deals with minimum mean-squared error, unbiased linear interpolation of a continuous domain spatial process based on a sparse set of irregularly spaced observations. The process is assumed to be governed by a linear regression model with errors that follow a second-order stationary Gaussian random field. A new method of prediction is developed that is compatible with the parameter estimation procedures of Vecchia. The result is a new likelihood-based method for joint parameter estimation and prediction that can be applied to large or small data sets with irregularly spaced data. Simulated and observed data sets are analysed to illustrate the methods.\",\"PeriodicalId\":17425,\"journal\":{\"name\":\"Journal of the royal statistical society series b-methodological\",\"volume\":\"20 1\",\"pages\":\"813-830\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the royal statistical society series b-methodological\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.2517-6161.1992.TB01454.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1992.TB01454.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文研究了基于不规则观测值稀疏集的连续域空间过程的最小均方误差无偏线性插值问题。假设该过程由线性回归模型控制,其误差遵循二阶平稳高斯随机场。提出了一种新的预测方法,该方法与维契亚参数估计程序兼容。结果是一种新的基于似然的联合参数估计和预测方法,可以应用于不规则数据间隔的大数据集或小数据集。通过对模拟和观测数据集的分析来说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Method of Prediction for Spatial Regression Models with Correlated Errors
SUMMARY This paper deals with minimum mean-squared error, unbiased linear interpolation of a continuous domain spatial process based on a sparse set of irregularly spaced observations. The process is assumed to be governed by a linear regression model with errors that follow a second-order stationary Gaussian random field. A new method of prediction is developed that is compatible with the parameter estimation procedures of Vecchia. The result is a new likelihood-based method for joint parameter estimation and prediction that can be applied to large or small data sets with irregularly spaced data. Simulated and observed data sets are analysed to illustrate the methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信