朝向一个尺度空间方面图:旋转立体

S. Pae, J. Ponce
{"title":"朝向一个尺度空间方面图:旋转立体","authors":"S. Pae, J. Ponce","doi":"10.1109/CVPR.1999.784629","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of constructing the scale-space aspect graph of a solid of revolution whose surface is the zero set of a polynomial volumetric density undergoing a Gaussian diffusion process. Equations for the associated visual event surfaces are derived, and polynomial curve tracing techniques are used to delineate these surfaces. An implementation and examples are presented, and limitations as well as extensions of the proposed approach are discussed.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Toward a scale-space aspect graph: solids of revolution\",\"authors\":\"S. Pae, J. Ponce\",\"doi\":\"10.1109/CVPR.1999.784629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of constructing the scale-space aspect graph of a solid of revolution whose surface is the zero set of a polynomial volumetric density undergoing a Gaussian diffusion process. Equations for the associated visual event surfaces are derived, and polynomial curve tracing techniques are used to delineate these surfaces. An implementation and examples are presented, and limitations as well as extensions of the proposed approach are discussed.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了一个旋转固体的尺度空间面向图的构造问题,该旋转固体的表面是经过高斯扩散过程的多项式体积密度的零集。推导了相关视觉事件曲面的方程,并使用多项式曲线跟踪技术来描绘这些曲面。给出了一个实现和示例,并讨论了该方法的局限性和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward a scale-space aspect graph: solids of revolution
This paper addresses the problem of constructing the scale-space aspect graph of a solid of revolution whose surface is the zero set of a polynomial volumetric density undergoing a Gaussian diffusion process. Equations for the associated visual event surfaces are derived, and polynomial curve tracing techniques are used to delineate these surfaces. An implementation and examples are presented, and limitations as well as extensions of the proposed approach are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信