Duygu Payzin-Dogru, Tim Froitzheim, Steven J Blair, Siddhartha G Jena, Hani Singer, Julia C Paoli, Ryan T Kim, Emil Kriukov, Sarah E Wilson, Renzhi Hou, Aaron M Savage, Victor Cat, Louis V Cammarata, S Y Celeste Wu, Vivien Bothe, Burcu Erdogan, Shifa Hossain, Noah Lopez, Julia Losner, Juan Velazquez Matos, Sangwon Min, Sebastian Böhm, Anthony E Striker, Kelly E Dooling, Adam H Freedman, Bobby Groves, Benjamin Tajer, Glory Kalu, Eric Wynn, Alan Y L Wong, Nadia Fröbisch, Petr Baranov, Maksim V Plikus, Jason D Buenrostro, Brian J Haas, Isaac M Chiu, Timothy B Sackton, Jessica L Whited
{"title":"肾上腺素能信号协调蝾螈截肢时的远端和局部反应。","authors":"Duygu Payzin-Dogru, Tim Froitzheim, Steven J Blair, Siddhartha G Jena, Hani Singer, Julia C Paoli, Ryan T Kim, Emil Kriukov, Sarah E Wilson, Renzhi Hou, Aaron M Savage, Victor Cat, Louis V Cammarata, S Y Celeste Wu, Vivien Bothe, Burcu Erdogan, Shifa Hossain, Noah Lopez, Julia Losner, Juan Velazquez Matos, Sangwon Min, Sebastian Böhm, Anthony E Striker, Kelly E Dooling, Adam H Freedman, Bobby Groves, Benjamin Tajer, Glory Kalu, Eric Wynn, Alan Y L Wong, Nadia Fröbisch, Petr Baranov, Maksim V Plikus, Jason D Buenrostro, Brian J Haas, Isaac M Chiu, Timothy B Sackton, Jessica L Whited","doi":"10.1101/2021.12.29.474455","DOIUrl":null,"url":null,"abstract":"<p><p>Many species regenerate lost body parts following amputation. Most limb regeneration research has focused on the immediate injury site. Meanwhile, body-wide injury responses remain largely unexplored but may be critical for regeneration. Here, we discovered a role for the sympathetic nervous system in stimulating a body-wide stem cell activation response to amputation that drives enhanced limb regeneration in axolotls. This response is mediated by adrenergic signaling, which coordinates distant cellular activation responses via the α<sub>2A</sub>-adrenergic receptor, and local regeneration responses via β-adrenergic receptors. Both α<sub>2A</sub>- and β-adrenergic signaling act upstream of mTOR signaling. Notably, systemically-activated axolotls regenerate limbs faster than naïve animals, suggesting a potential selective advantage in environments where injury from cannibalism or predation is common. This work challenges the predominant view that cellular responses underlying regeneration are confined to the injury site and argues instead for body-wide cellular priming as a foundational step that enables localized tissue regrowth.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330692/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adrenergic signaling coordinates distant and local responses to amputation in axolotl.\",\"authors\":\"Duygu Payzin-Dogru, Tim Froitzheim, Steven J Blair, Siddhartha G Jena, Hani Singer, Julia C Paoli, Ryan T Kim, Emil Kriukov, Sarah E Wilson, Renzhi Hou, Aaron M Savage, Victor Cat, Louis V Cammarata, S Y Celeste Wu, Vivien Bothe, Burcu Erdogan, Shifa Hossain, Noah Lopez, Julia Losner, Juan Velazquez Matos, Sangwon Min, Sebastian Böhm, Anthony E Striker, Kelly E Dooling, Adam H Freedman, Bobby Groves, Benjamin Tajer, Glory Kalu, Eric Wynn, Alan Y L Wong, Nadia Fröbisch, Petr Baranov, Maksim V Plikus, Jason D Buenrostro, Brian J Haas, Isaac M Chiu, Timothy B Sackton, Jessica L Whited\",\"doi\":\"10.1101/2021.12.29.474455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many species regenerate lost body parts following amputation. Most limb regeneration research has focused on the immediate injury site. Meanwhile, body-wide injury responses remain largely unexplored but may be critical for regeneration. Here, we discovered a role for the sympathetic nervous system in stimulating a body-wide stem cell activation response to amputation that drives enhanced limb regeneration in axolotls. This response is mediated by adrenergic signaling, which coordinates distant cellular activation responses via the α<sub>2A</sub>-adrenergic receptor, and local regeneration responses via β-adrenergic receptors. Both α<sub>2A</sub>- and β-adrenergic signaling act upstream of mTOR signaling. Notably, systemically-activated axolotls regenerate limbs faster than naïve animals, suggesting a potential selective advantage in environments where injury from cannibalism or predation is common. This work challenges the predominant view that cellular responses underlying regeneration are confined to the injury site and argues instead for body-wide cellular priming as a foundational step that enables localized tissue regrowth.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330692/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.12.29.474455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.12.29.474455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adrenergic signaling coordinates distant and local responses to amputation in axolotl.
Many species regenerate lost body parts following amputation. Most limb regeneration research has focused on the immediate injury site. Meanwhile, body-wide injury responses remain largely unexplored but may be critical for regeneration. Here, we discovered a role for the sympathetic nervous system in stimulating a body-wide stem cell activation response to amputation that drives enhanced limb regeneration in axolotls. This response is mediated by adrenergic signaling, which coordinates distant cellular activation responses via the α2A-adrenergic receptor, and local regeneration responses via β-adrenergic receptors. Both α2A- and β-adrenergic signaling act upstream of mTOR signaling. Notably, systemically-activated axolotls regenerate limbs faster than naïve animals, suggesting a potential selective advantage in environments where injury from cannibalism or predation is common. This work challenges the predominant view that cellular responses underlying regeneration are confined to the injury site and argues instead for body-wide cellular priming as a foundational step that enables localized tissue regrowth.