Birnbaum-Saunders自回归条件期限模型的贝叶斯推断及其在高频金融数据中的应用

Q4 Mathematics
Nascimento Fernando, Leao Jeremias, H. Saulo
{"title":"Birnbaum-Saunders自回归条件期限模型的贝叶斯推断及其在高频金融数据中的应用","authors":"Nascimento Fernando, Leao Jeremias, H. Saulo","doi":"10.1080/23737484.2021.1874571","DOIUrl":null,"url":null,"abstract":"Abstract Autoregressive conditional duration (ACD) models have been preponderant when the subject is the modeling of high-frequency financial data. A prominent model that has demonstrated great adjustment capacity is the ACD model based on the Birnbaum–Saunders distribution (BS-ACD). Recent works have shown that this model outperforms the existing models in the literature. Nevertheless, these works explore only classical estimation approaches. In this article, we perform a Bayesian approach of the BS-ACD model. The scale parameter was modeled considering a dynamic linear model. Estimation of posterior distribution of parameters was approximated through Markov chain Monte Carlo methods. A simulation study is conducted to evaluate the performance of Bayesian estimators and two applications to real high frequency data illustrate the proposed methodology.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"90 3 1","pages":"215 - 228"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian inference for the Birnbaum–Saunders autoregressive conditional duration model with application to high-frequency financial data\",\"authors\":\"Nascimento Fernando, Leao Jeremias, H. Saulo\",\"doi\":\"10.1080/23737484.2021.1874571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Autoregressive conditional duration (ACD) models have been preponderant when the subject is the modeling of high-frequency financial data. A prominent model that has demonstrated great adjustment capacity is the ACD model based on the Birnbaum–Saunders distribution (BS-ACD). Recent works have shown that this model outperforms the existing models in the literature. Nevertheless, these works explore only classical estimation approaches. In this article, we perform a Bayesian approach of the BS-ACD model. The scale parameter was modeled considering a dynamic linear model. Estimation of posterior distribution of parameters was approximated through Markov chain Monte Carlo methods. A simulation study is conducted to evaluate the performance of Bayesian estimators and two applications to real high frequency data illustrate the proposed methodology.\",\"PeriodicalId\":36561,\"journal\":{\"name\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"volume\":\"90 3 1\",\"pages\":\"215 - 228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics Case Studies Data Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737484.2021.1874571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2021.1874571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

自回归条件持续时间(ACD)模型在高频金融数据建模中占有优势。基于Birnbaum-Saunders分布的ACD模型(BS-ACD)是具有较强调节能力的突出模型。最近的研究表明,该模型优于文献中现有的模型。然而,这些工作只探讨了经典的估计方法。在本文中,我们执行了BS-ACD模型的贝叶斯方法。尺度参数采用动态线性模型建模。通过马尔可夫链蒙特卡罗方法逼近了参数后验分布的估计。通过仿真研究评估了贝叶斯估计器的性能,并在实际高频数据中的两个应用验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian inference for the Birnbaum–Saunders autoregressive conditional duration model with application to high-frequency financial data
Abstract Autoregressive conditional duration (ACD) models have been preponderant when the subject is the modeling of high-frequency financial data. A prominent model that has demonstrated great adjustment capacity is the ACD model based on the Birnbaum–Saunders distribution (BS-ACD). Recent works have shown that this model outperforms the existing models in the literature. Nevertheless, these works explore only classical estimation approaches. In this article, we perform a Bayesian approach of the BS-ACD model. The scale parameter was modeled considering a dynamic linear model. Estimation of posterior distribution of parameters was approximated through Markov chain Monte Carlo methods. A simulation study is conducted to evaluate the performance of Bayesian estimators and two applications to real high frequency data illustrate the proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信