连接凸多边形顶点的非自相交路径集

IF 0.2 Q4 EDUCATION & EDUCATIONAL RESEARCH
I. Kortezov
{"title":"连接凸多边形顶点的非自相交路径集","authors":"I. Kortezov","doi":"10.53656/math2022-6-4-set","DOIUrl":null,"url":null,"abstract":"The paper deals with counting the sets of non-self-intersecting paths whose nodes form a partitioning of the set of vertices of a given convex polygon. There turn to exist compact formulae when the magnitude of these sets is fixed. Some of these formulae provide new properties for some of the entries of the On-line Encyclopedia of Integer Sequences, while others generate new entries therein.","PeriodicalId":41818,"journal":{"name":"Mathematics and Informatics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sets of Non-Self-Intersecting Paths Connecting the Vertices of a Convex Polygon\",\"authors\":\"I. Kortezov\",\"doi\":\"10.53656/math2022-6-4-set\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with counting the sets of non-self-intersecting paths whose nodes form a partitioning of the set of vertices of a given convex polygon. There turn to exist compact formulae when the magnitude of these sets is fixed. Some of these formulae provide new properties for some of the entries of the On-line Encyclopedia of Integer Sequences, while others generate new entries therein.\",\"PeriodicalId\":41818,\"journal\":{\"name\":\"Mathematics and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53656/math2022-6-4-set\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53656/math2022-6-4-set","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了非自交路径集合的计数问题,这些路径的节点构成了给定凸多边形顶点集合的分区。当这些集合的大小固定时,就有紧化公式存在。其中一些公式为整数序列在线百科全书的某些条目提供了新的性质,而另一些公式则在其中生成了新的条目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sets of Non-Self-Intersecting Paths Connecting the Vertices of a Convex Polygon
The paper deals with counting the sets of non-self-intersecting paths whose nodes form a partitioning of the set of vertices of a given convex polygon. There turn to exist compact formulae when the magnitude of these sets is fixed. Some of these formulae provide new properties for some of the entries of the On-line Encyclopedia of Integer Sequences, while others generate new entries therein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Informatics
Mathematics and Informatics EDUCATION & EDUCATIONAL RESEARCH-
自引率
50.00%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信