特征向量可视化和艺术

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
D. Griffith
{"title":"特征向量可视化和艺术","authors":"D. Griffith","doi":"10.1080/17513472.2021.1922239","DOIUrl":null,"url":null,"abstract":"Existing interfaces between mathematics and art, and geography and art, began overlapping in recent years. This newer overarching intersection partly is attributable to the scientific visualization of the concept of an eigenvector from the subdiscipline of matrix algebra. Spectral geometry and signal processing expanded this overlap. Today, novel applications of the statistical Moran eigenvector spatial filtering (MESF) methodology to paintings accentuates and exploits spatial autocorrelation as a fundamental element of art, further expanding this overlap. This paper studies MESF visualizations by compositing identified relevant spatial autocorrelation components, examining a particular Van Gogh painting for the first time, and more intensely re-examining several paintings already evaluated with MESF techniques. Findings include: painting replications solely based upon their spatial autocorrelation components as captured and visualized by certain eigenvectors are visibly indistinguishable from their original counterparts; and, spatial autocorrelation supplies measurements allowing a differentiation of paintings, a potentially valuable discovery for art history. GRAPHICAL ABSTRACT","PeriodicalId":42612,"journal":{"name":"Journal of Mathematics and the Arts","volume":"16 1","pages":"170 - 187"},"PeriodicalIF":0.3000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Eigenvector visualization and art\",\"authors\":\"D. Griffith\",\"doi\":\"10.1080/17513472.2021.1922239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing interfaces between mathematics and art, and geography and art, began overlapping in recent years. This newer overarching intersection partly is attributable to the scientific visualization of the concept of an eigenvector from the subdiscipline of matrix algebra. Spectral geometry and signal processing expanded this overlap. Today, novel applications of the statistical Moran eigenvector spatial filtering (MESF) methodology to paintings accentuates and exploits spatial autocorrelation as a fundamental element of art, further expanding this overlap. This paper studies MESF visualizations by compositing identified relevant spatial autocorrelation components, examining a particular Van Gogh painting for the first time, and more intensely re-examining several paintings already evaluated with MESF techniques. Findings include: painting replications solely based upon their spatial autocorrelation components as captured and visualized by certain eigenvectors are visibly indistinguishable from their original counterparts; and, spatial autocorrelation supplies measurements allowing a differentiation of paintings, a potentially valuable discovery for art history. GRAPHICAL ABSTRACT\",\"PeriodicalId\":42612,\"journal\":{\"name\":\"Journal of Mathematics and the Arts\",\"volume\":\"16 1\",\"pages\":\"170 - 187\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and the Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17513472.2021.1922239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and the Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17513472.2021.1922239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4

摘要

近年来,数学与艺术、地理与艺术之间已有的界面开始重叠。这种新的总体交叉部分归因于矩阵代数分支学科特征向量概念的科学可视化。光谱几何和信号处理扩展了这种重叠。今天,统计Moran特征向量空间滤波(MESF)方法在绘画中的新应用强调并利用空间自相关作为艺术的基本元素,进一步扩大了这种重叠。本文通过合成已识别的相关空间自相关成分,首次检查梵高的一幅画作,以及更深入地重新检查已经用MESF技术评估过的几幅画作,来研究MESF可视化。研究结果包括:仅基于其空间自相关成分的绘画复制,由某些特征向量捕获和可视化,与原始副本明显无法区分;而且,空间自相关提供了允许区分绘画的测量,这对艺术史来说是一个潜在的有价值的发现。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvector visualization and art
Existing interfaces between mathematics and art, and geography and art, began overlapping in recent years. This newer overarching intersection partly is attributable to the scientific visualization of the concept of an eigenvector from the subdiscipline of matrix algebra. Spectral geometry and signal processing expanded this overlap. Today, novel applications of the statistical Moran eigenvector spatial filtering (MESF) methodology to paintings accentuates and exploits spatial autocorrelation as a fundamental element of art, further expanding this overlap. This paper studies MESF visualizations by compositing identified relevant spatial autocorrelation components, examining a particular Van Gogh painting for the first time, and more intensely re-examining several paintings already evaluated with MESF techniques. Findings include: painting replications solely based upon their spatial autocorrelation components as captured and visualized by certain eigenvectors are visibly indistinguishable from their original counterparts; and, spatial autocorrelation supplies measurements allowing a differentiation of paintings, a potentially valuable discovery for art history. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and the Arts
Journal of Mathematics and the Arts MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
0.50
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信