一种由k -原生动物组成的ClusterMix - prototypes算法,该算法根据患者心力衰竭的可变特征来捕捉患者的特征

Raditya Novidianto, Kartika Fithriasari
{"title":"一种由k -原生动物组成的ClusterMix - prototypes算法,该算法根据患者心力衰竭的可变特征来捕捉患者的特征","authors":"Raditya Novidianto, Kartika Fithriasari","doi":"10.12962/J27213862.V4I1.8479","DOIUrl":null,"url":null,"abstract":"ABSTRAK ⎯ Cardiovascular Disease (CVD) atau penyakit kardiovaskular adalah salah satu penyebab utama kematian cukup besar di seluruh dunia yang berujung pada kejadian gagal jantung. Organiasasi kesehatan WHO menyebutkan jumlah orang yang meninggal karena penyakit kardiovaskuler akibat gagal jantung setiap tahun memiliki rata-rata 17,9 juta kematian setiap tahunnya, yaitu sekitar 31 persen dari total kematian secara global. Pendeteksian faktor mortalitas pasien gagal jantung perlu dibentuk segmentasi yang berguna untuk memperkecil peluang terjadinya kematian akibat gagal jantung. Salah satunya dengan menggunakan variabel penciri mortalitas akibat gagal jantung dengan cara menerapkan algoritma k-prototypes. Hasil penggerombolan terbentuk 2 kluster yang dianggap optimal berdasarkan nilai koefisien silhouette tertinggi yaitu sebesar 0.5777. Hasil penelitian dilakukan segementasi pasien dengan variabel penciri mortalitas pasien gagal jantung yang menunjukan bahwa kluster 1 merupakan gerombol pasien yang memiliki resiko rendah terhadap peluang mortalitas akibat gagal jantung dan kluster 2 merupakan gerombol pasien dengan karaktistik pasien dengan resiko yang tinggi terhadap peluang mortalitas akibat gagal jantung. Segementasi tersebut didasari dari nilai rata-rata setiap variabel penciri dari faktor mortalitas gagal jantung pada setiap kluster yang dibandingkan dengan kondisi normal pada variabel serum creatine, ejection fraction, usia, serum sodium, tekanan darah, anemia, creatinine phosphokinase, plateles, merokok, jenis kelamin dan diabetes.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algoritma ClusterMix K-Prototypes Untuk Menangkap Karakteristik Pasien Berdasarkan Variabel Penciri Mortalitas Pasien Dengan Gagal Jantung\",\"authors\":\"Raditya Novidianto, Kartika Fithriasari\",\"doi\":\"10.12962/J27213862.V4I1.8479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRAK ⎯ Cardiovascular Disease (CVD) atau penyakit kardiovaskular adalah salah satu penyebab utama kematian cukup besar di seluruh dunia yang berujung pada kejadian gagal jantung. Organiasasi kesehatan WHO menyebutkan jumlah orang yang meninggal karena penyakit kardiovaskuler akibat gagal jantung setiap tahun memiliki rata-rata 17,9 juta kematian setiap tahunnya, yaitu sekitar 31 persen dari total kematian secara global. Pendeteksian faktor mortalitas pasien gagal jantung perlu dibentuk segmentasi yang berguna untuk memperkecil peluang terjadinya kematian akibat gagal jantung. Salah satunya dengan menggunakan variabel penciri mortalitas akibat gagal jantung dengan cara menerapkan algoritma k-prototypes. Hasil penggerombolan terbentuk 2 kluster yang dianggap optimal berdasarkan nilai koefisien silhouette tertinggi yaitu sebesar 0.5777. Hasil penelitian dilakukan segementasi pasien dengan variabel penciri mortalitas pasien gagal jantung yang menunjukan bahwa kluster 1 merupakan gerombol pasien yang memiliki resiko rendah terhadap peluang mortalitas akibat gagal jantung dan kluster 2 merupakan gerombol pasien dengan karaktistik pasien dengan resiko yang tinggi terhadap peluang mortalitas akibat gagal jantung. Segementasi tersebut didasari dari nilai rata-rata setiap variabel penciri dari faktor mortalitas gagal jantung pada setiap kluster yang dibandingkan dengan kondisi normal pada variabel serum creatine, ejection fraction, usia, serum sodium, tekanan darah, anemia, creatinine phosphokinase, plateles, merokok, jenis kelamin dan diabetes.\",\"PeriodicalId\":31274,\"journal\":{\"name\":\"Inferensi Jurnal Penelitian Sosial Keagamaan\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inferensi Jurnal Penelitian Sosial Keagamaan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12962/J27213862.V4I1.8479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inferensi Jurnal Penelitian Sosial Keagamaan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/J27213862.V4I1.8479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

抽象⎯心血管疾病(CVD)或心血管疾病死亡的主要原因之一是世界各地的足够大,会导致心脏事件。世界卫生组织指出,每年死于心血管衰竭的人数平均为1790万人,占全球总死亡人数的31%。检测心脏衰竭患者的死亡率需要形成一个有用的细分,以减少死于心力衰竭的几率。其中之一是使用了应用k-原型算法的心率变数。结果由2个集群形成,这些集群被认为是最优的,其最高的剪切系数为0.5777。该研究对心脏衰竭患者死亡率有变量特征的患者进行了分类,这表明群体1是心脏衰竭患者死亡率低的患者群体,而群体2是患有心脏病的病人群体,其发病率高的患者群体。该分段是基于cluster中每组心脏死亡因子的平均值,而这些变量的死亡率与年龄、钠、血压、贫血、肌酸素、胎盘、吸烟和糖尿病的正常情况相比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algoritma ClusterMix K-Prototypes Untuk Menangkap Karakteristik Pasien Berdasarkan Variabel Penciri Mortalitas Pasien Dengan Gagal Jantung
ABSTRAK ⎯ Cardiovascular Disease (CVD) atau penyakit kardiovaskular adalah salah satu penyebab utama kematian cukup besar di seluruh dunia yang berujung pada kejadian gagal jantung. Organiasasi kesehatan WHO menyebutkan jumlah orang yang meninggal karena penyakit kardiovaskuler akibat gagal jantung setiap tahun memiliki rata-rata 17,9 juta kematian setiap tahunnya, yaitu sekitar 31 persen dari total kematian secara global. Pendeteksian faktor mortalitas pasien gagal jantung perlu dibentuk segmentasi yang berguna untuk memperkecil peluang terjadinya kematian akibat gagal jantung. Salah satunya dengan menggunakan variabel penciri mortalitas akibat gagal jantung dengan cara menerapkan algoritma k-prototypes. Hasil penggerombolan terbentuk 2 kluster yang dianggap optimal berdasarkan nilai koefisien silhouette tertinggi yaitu sebesar 0.5777. Hasil penelitian dilakukan segementasi pasien dengan variabel penciri mortalitas pasien gagal jantung yang menunjukan bahwa kluster 1 merupakan gerombol pasien yang memiliki resiko rendah terhadap peluang mortalitas akibat gagal jantung dan kluster 2 merupakan gerombol pasien dengan karaktistik pasien dengan resiko yang tinggi terhadap peluang mortalitas akibat gagal jantung. Segementasi tersebut didasari dari nilai rata-rata setiap variabel penciri dari faktor mortalitas gagal jantung pada setiap kluster yang dibandingkan dengan kondisi normal pada variabel serum creatine, ejection fraction, usia, serum sodium, tekanan darah, anemia, creatinine phosphokinase, plateles, merokok, jenis kelamin dan diabetes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信