使用一致贝叶斯方法的最优实验设计

Scott N. Walsh, T. Wildey, J. Jakeman
{"title":"使用一致贝叶斯方法的最优实验设计","authors":"Scott N. Walsh, T. Wildey, J. Jakeman","doi":"10.1115/1.4037457","DOIUrl":null,"url":null,"abstract":"We consider the utilization of a computational model to guide the optimal acquisition of experimental data to inform the stochastic description of model input parameters. Our formulation is based on the recently developed consistent Bayesian approach for solving stochastic inverse problems which seeks a posterior probability density that is consistent with the model and the data in the sense that the push-forward of the posterior (through the computational model) matches the observed density on the observations almost everywhere. Given a set a potential observations, our optimal experimental design (OED) seeks the observation, or set of observations, that maximizes the expected information gain from the prior probability density on the model parameters. We discuss the characterization of the space of observed densities and a computationally efficient approach for rescaling observed densities to satisfy the fundamental assumptions of the consistent Bayesian approach. Numerical results are presented to compare our approach with existing OED methodologies using the classical/statistical Bayesian approach and to demonstrate our OED on a set of representative PDE-based models.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Optimal Experimental Design Using A Consistent Bayesian Approach\",\"authors\":\"Scott N. Walsh, T. Wildey, J. Jakeman\",\"doi\":\"10.1115/1.4037457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the utilization of a computational model to guide the optimal acquisition of experimental data to inform the stochastic description of model input parameters. Our formulation is based on the recently developed consistent Bayesian approach for solving stochastic inverse problems which seeks a posterior probability density that is consistent with the model and the data in the sense that the push-forward of the posterior (through the computational model) matches the observed density on the observations almost everywhere. Given a set a potential observations, our optimal experimental design (OED) seeks the observation, or set of observations, that maximizes the expected information gain from the prior probability density on the model parameters. We discuss the characterization of the space of observed densities and a computationally efficient approach for rescaling observed densities to satisfy the fundamental assumptions of the consistent Bayesian approach. Numerical results are presented to compare our approach with existing OED methodologies using the classical/statistical Bayesian approach and to demonstrate our OED on a set of representative PDE-based models.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4037457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4037457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们考虑利用计算模型来指导实验数据的最佳获取,以告知模型输入参数的随机描述。我们的公式基于最近开发的解决随机逆问题的一致贝叶斯方法,该方法寻求与模型和数据一致的后验概率密度,即后验的推进(通过计算模型)几乎在任何地方都与观测到的密度相匹配。给定一组潜在的观测值,我们的最佳实验设计(OED)寻求从模型参数的先验概率密度中最大化预期信息增益的观测值或观测值集。我们讨论了观测密度空间的表征和一种计算效率高的方法来重新调整观测密度以满足一致贝叶斯方法的基本假设。给出了数值结果,将我们的方法与使用经典/统计贝叶斯方法的现有OED方法进行比较,并在一组具有代表性的基于pde的模型上展示了我们的OED。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Experimental Design Using A Consistent Bayesian Approach
We consider the utilization of a computational model to guide the optimal acquisition of experimental data to inform the stochastic description of model input parameters. Our formulation is based on the recently developed consistent Bayesian approach for solving stochastic inverse problems which seeks a posterior probability density that is consistent with the model and the data in the sense that the push-forward of the posterior (through the computational model) matches the observed density on the observations almost everywhere. Given a set a potential observations, our optimal experimental design (OED) seeks the observation, or set of observations, that maximizes the expected information gain from the prior probability density on the model parameters. We discuss the characterization of the space of observed densities and a computationally efficient approach for rescaling observed densities to satisfy the fundamental assumptions of the consistent Bayesian approach. Numerical results are presented to compare our approach with existing OED methodologies using the classical/statistical Bayesian approach and to demonstrate our OED on a set of representative PDE-based models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信