Erik Sedlák , Mathias Sprinzl , Norbert Grillenbeck , Marián Antalı́k
{"title":"伸长因子Tu在无核苷酸、GDP和GTP形式及伸长因子Ts存在下的微量热分析研究","authors":"Erik Sedlák , Mathias Sprinzl , Norbert Grillenbeck , Marián Antalı́k","doi":"10.1016/S0167-4838(02)00225-X","DOIUrl":null,"url":null,"abstract":"<div><p>Elongation factor (EF) Tu undergoes profound nucleotide-dependent conformational changes in its functional cycle. The thermodynamic parameters of the different <em>Thermus thermophilus</em> EF-Tu forms, its domains I, II/III and III, were determined by microcalorimetry. Thermal transitions of the EF-Tu·GDP and EF-Tu·guanosine-5′-[β,γ-imido]triphosphate have a cooperative two-state character. Nucleotide removal affected the cooperativity of the thermal transition of EF-Tu. Microcalorimetric measurements of nucleotide-free EF-Tu and its separated domains showed that domains II/III have the main stabilizing role for the whole protein. Despite the fact that strong interactions between elongation factors Tu and Ts from <em>T. thermophilus</em> at 20°C exist, the thermal transition of neither protein in the complex was significantly affected.</p></div>","PeriodicalId":100166,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00225-X","citationCount":"5","resultStr":"{\"title\":\"Microcalorimetric study of elongation factor Tu from Thermus thermophilus in nucleotide-free, GDP and GTP forms and in the presence of elongation factor Ts\",\"authors\":\"Erik Sedlák , Mathias Sprinzl , Norbert Grillenbeck , Marián Antalı́k\",\"doi\":\"10.1016/S0167-4838(02)00225-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Elongation factor (EF) Tu undergoes profound nucleotide-dependent conformational changes in its functional cycle. The thermodynamic parameters of the different <em>Thermus thermophilus</em> EF-Tu forms, its domains I, II/III and III, were determined by microcalorimetry. Thermal transitions of the EF-Tu·GDP and EF-Tu·guanosine-5′-[β,γ-imido]triphosphate have a cooperative two-state character. Nucleotide removal affected the cooperativity of the thermal transition of EF-Tu. Microcalorimetric measurements of nucleotide-free EF-Tu and its separated domains showed that domains II/III have the main stabilizing role for the whole protein. Despite the fact that strong interactions between elongation factors Tu and Ts from <em>T. thermophilus</em> at 20°C exist, the thermal transition of neither protein in the complex was significantly affected.</p></div>\",\"PeriodicalId\":100166,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0167-4838(02)00225-X\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016748380200225X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016748380200225X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microcalorimetric study of elongation factor Tu from Thermus thermophilus in nucleotide-free, GDP and GTP forms and in the presence of elongation factor Ts
Elongation factor (EF) Tu undergoes profound nucleotide-dependent conformational changes in its functional cycle. The thermodynamic parameters of the different Thermus thermophilus EF-Tu forms, its domains I, II/III and III, were determined by microcalorimetry. Thermal transitions of the EF-Tu·GDP and EF-Tu·guanosine-5′-[β,γ-imido]triphosphate have a cooperative two-state character. Nucleotide removal affected the cooperativity of the thermal transition of EF-Tu. Microcalorimetric measurements of nucleotide-free EF-Tu and its separated domains showed that domains II/III have the main stabilizing role for the whole protein. Despite the fact that strong interactions between elongation factors Tu and Ts from T. thermophilus at 20°C exist, the thermal transition of neither protein in the complex was significantly affected.