有向图的可缩性与固定团性质

Rueiher Tsaur
{"title":"有向图的可缩性与固定团性质","authors":"Rueiher Tsaur","doi":"10.1109/ICAWST.2013.6765476","DOIUrl":null,"url":null,"abstract":"Homomorphism graphs are digraphs whose vertices are homomorphisms. A digraph is said to be contractible if the homomorphism graph consisting of vertices the self-mapping homomorphisms of the digraph is connected. In this paper, we show that the notion of contractible digraph extends and unifies various notions of dismantlable structures such as dismantlable graphs and dismantlable posets.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"312 4 1","pages":"418-422"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contractibility for digraphs and the fixed clique property\",\"authors\":\"Rueiher Tsaur\",\"doi\":\"10.1109/ICAWST.2013.6765476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homomorphism graphs are digraphs whose vertices are homomorphisms. A digraph is said to be contractible if the homomorphism graph consisting of vertices the self-mapping homomorphisms of the digraph is connected. In this paper, we show that the notion of contractible digraph extends and unifies various notions of dismantlable structures such as dismantlable graphs and dismantlable posets.\",\"PeriodicalId\":68697,\"journal\":{\"name\":\"炎黄地理\",\"volume\":\"312 4 1\",\"pages\":\"418-422\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"炎黄地理\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2013.6765476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

同态图是顶点同态的有向图。如果由有向图的自映射同态顶点组成的同态图是连通的,则有向图是可缩并的。在本文中,我们证明了可压缩有向图的概念扩展并统一了可拆卸图和可拆卸序集等可拆卸结构的各种概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contractibility for digraphs and the fixed clique property
Homomorphism graphs are digraphs whose vertices are homomorphisms. A digraph is said to be contractible if the homomorphism graph consisting of vertices the self-mapping homomorphisms of the digraph is connected. In this paper, we show that the notion of contractible digraph extends and unifies various notions of dismantlable structures such as dismantlable graphs and dismantlable posets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
784
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信