Daniel Zoran, Rishabh Kabra, Alexander Lerchner, Danilo Jimenez Rezende
{"title":"部分:无监督分割槽,注意力和独立性最大化","authors":"Daniel Zoran, Rishabh Kabra, Alexander Lerchner, Danilo Jimenez Rezende","doi":"10.1109/ICCV48922.2021.01027","DOIUrl":null,"url":null,"abstract":"From an early age, humans perceive the visual world as composed of coherent objects with distinctive properties such as shape, size, and color. There is great interest in building models that are able to learn similar structure, ideally in an unsupervised manner. Learning such structure from complex 3D scenes that include clutter, occlusions, interactions, and camera motion is still an open challenge. We present a model that is able to segment visual scenes from complex 3D environments into distinct objects, learn disentangled representations of individual objects, and form consistent and coherent predictions of future frames, in a fully unsupervised manner. Our model (named PARTS) builds on recent approaches that utilize iterative amortized inference and transition dynamics for deep generative models. We achieve dramatic improvements in performance by introducing several novel contributions. We introduce a recurrent slot-attention like encoder which allows for top-down influence during inference. We argue that when inferring scene structure from image sequences it is better to use a fixed prior which is shared across the sequence rather than an auto-regressive prior as often used in prior work. We demonstrate our model’s success on three different video datasets (the popular benchmark CLEVRER; a simulated 3D Playroom environment; and a real-world Robotics Arm dataset). Finally, we analyze the contributions of the various model components and the representations learned by the model.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"16 1","pages":"10419-10427"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"PARTS: Unsupervised segmentation with slots, attention and independence maximization\",\"authors\":\"Daniel Zoran, Rishabh Kabra, Alexander Lerchner, Danilo Jimenez Rezende\",\"doi\":\"10.1109/ICCV48922.2021.01027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From an early age, humans perceive the visual world as composed of coherent objects with distinctive properties such as shape, size, and color. There is great interest in building models that are able to learn similar structure, ideally in an unsupervised manner. Learning such structure from complex 3D scenes that include clutter, occlusions, interactions, and camera motion is still an open challenge. We present a model that is able to segment visual scenes from complex 3D environments into distinct objects, learn disentangled representations of individual objects, and form consistent and coherent predictions of future frames, in a fully unsupervised manner. Our model (named PARTS) builds on recent approaches that utilize iterative amortized inference and transition dynamics for deep generative models. We achieve dramatic improvements in performance by introducing several novel contributions. We introduce a recurrent slot-attention like encoder which allows for top-down influence during inference. We argue that when inferring scene structure from image sequences it is better to use a fixed prior which is shared across the sequence rather than an auto-regressive prior as often used in prior work. We demonstrate our model’s success on three different video datasets (the popular benchmark CLEVRER; a simulated 3D Playroom environment; and a real-world Robotics Arm dataset). Finally, we analyze the contributions of the various model components and the representations learned by the model.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"16 1\",\"pages\":\"10419-10427\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.01027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PARTS: Unsupervised segmentation with slots, attention and independence maximization
From an early age, humans perceive the visual world as composed of coherent objects with distinctive properties such as shape, size, and color. There is great interest in building models that are able to learn similar structure, ideally in an unsupervised manner. Learning such structure from complex 3D scenes that include clutter, occlusions, interactions, and camera motion is still an open challenge. We present a model that is able to segment visual scenes from complex 3D environments into distinct objects, learn disentangled representations of individual objects, and form consistent and coherent predictions of future frames, in a fully unsupervised manner. Our model (named PARTS) builds on recent approaches that utilize iterative amortized inference and transition dynamics for deep generative models. We achieve dramatic improvements in performance by introducing several novel contributions. We introduce a recurrent slot-attention like encoder which allows for top-down influence during inference. We argue that when inferring scene structure from image sequences it is better to use a fixed prior which is shared across the sequence rather than an auto-regressive prior as often used in prior work. We demonstrate our model’s success on three different video datasets (the popular benchmark CLEVRER; a simulated 3D Playroom environment; and a real-world Robotics Arm dataset). Finally, we analyze the contributions of the various model components and the representations learned by the model.