极端波动、金融危机与尾指数的l矩估计

Bertrand B. Maillet, Jean-Philippe Médecin
{"title":"极端波动、金融危机与尾指数的l矩估计","authors":"Bertrand B. Maillet, Jean-Philippe Médecin","doi":"10.2139/ssrn.1288661","DOIUrl":null,"url":null,"abstract":"Following Bali and Weinbaum (2005) and Maillet et al. (2008), we present several estimates of volatilities computed with high- and low-frequency data and complement their results using additional measures of risk and several alternative methods for tail-index estimation. The aim is here to confirm previous results regarding the slope of the tail of various risk measure distributions, in order to define the high watermarks of market risks. We also produce synthetic general results concerning the method of estimation of the tail- indexes related to expressions of the L-moments. Based on estimates of tail indexes, backed-out from the high frequency 30' sampled CAC40 French stock Index series on the period 1997-2006, using Non-parametric Generalized Hill, Maximum Likelihood and various kinds of L-moment Methods for the estimation of both a Generalized Extreme Value density and a Generalized Pareto Distribution, we confirm that a heavy-tail density specification of the Log-volatility is not necessary.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2009-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extreme Volatilities, Financial Crises and L-Moment Estimations of Tail Indexes\",\"authors\":\"Bertrand B. Maillet, Jean-Philippe Médecin\",\"doi\":\"10.2139/ssrn.1288661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following Bali and Weinbaum (2005) and Maillet et al. (2008), we present several estimates of volatilities computed with high- and low-frequency data and complement their results using additional measures of risk and several alternative methods for tail-index estimation. The aim is here to confirm previous results regarding the slope of the tail of various risk measure distributions, in order to define the high watermarks of market risks. We also produce synthetic general results concerning the method of estimation of the tail- indexes related to expressions of the L-moments. Based on estimates of tail indexes, backed-out from the high frequency 30' sampled CAC40 French stock Index series on the period 1997-2006, using Non-parametric Generalized Hill, Maximum Likelihood and various kinds of L-moment Methods for the estimation of both a Generalized Extreme Value density and a Generalized Pareto Distribution, we confirm that a heavy-tail density specification of the Log-volatility is not necessary.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1288661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1288661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

继Bali和Weinbaum(2005)和Maillet等人(2008)之后,我们提出了几种用高频和低频数据计算的波动率估计,并使用额外的风险度量和尾部指数估计的几种替代方法来补充他们的结果。这里的目的是确认先前关于各种风险度量分布的尾部斜率的结果,以便定义市场风险的高水印。我们还对与l矩表达式有关的尾指标的估计方法给出了综合的一般结果。从1997-2006年CAC40法国股票指数系列的高频30′采样数据中提取尾指数的估计,利用非参数广义希尔法、极大似然法和各种l矩法对广义极值密度和广义帕累托分布进行估计,我们证实了对数波动率的重尾密度规范是不必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme Volatilities, Financial Crises and L-Moment Estimations of Tail Indexes
Following Bali and Weinbaum (2005) and Maillet et al. (2008), we present several estimates of volatilities computed with high- and low-frequency data and complement their results using additional measures of risk and several alternative methods for tail-index estimation. The aim is here to confirm previous results regarding the slope of the tail of various risk measure distributions, in order to define the high watermarks of market risks. We also produce synthetic general results concerning the method of estimation of the tail- indexes related to expressions of the L-moments. Based on estimates of tail indexes, backed-out from the high frequency 30' sampled CAC40 French stock Index series on the period 1997-2006, using Non-parametric Generalized Hill, Maximum Likelihood and various kinds of L-moment Methods for the estimation of both a Generalized Extreme Value density and a Generalized Pareto Distribution, we confirm that a heavy-tail density specification of the Log-volatility is not necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信