基于中药成分和胃肠作用的姜汁加工工艺的共同特点及机理

L. Zhong, Heng-Li Tong, Z. Meng, Huan Xi, Q. Gong
{"title":"基于中药成分和胃肠作用的姜汁加工工艺的共同特点及机理","authors":"L. Zhong, Heng-Li Tong, Z. Meng, Huan Xi, Q. Gong","doi":"10.4172/2161-0398.1000242","DOIUrl":null,"url":null,"abstract":"Context: All Chinese herbal medicines should be processed before they are used in clinics offering Traditional Chinese Medicine (TCM). Ginger juice is one of the process assistants and a widely-applied agent in processing many herbal medicines. Objective: In this study, the ginger juice was investigated with its processing mechanism according to its common processing function on herbal medicines, which included Rhizoma pinelliae (RP, the tuber of Pinellia ternata (Thunb.) Breit.), officinal magnolia bark (OMB, the root bark of Coptis chinensis Franch.), and Rhizoma coptidis (RC, the rhizoma of Magnolia officinalis Rehd. et Wils). Materials and Methods: The composition, especially the essential oil, of the raw ingredients and ginger juiceprocessed products and their gastrointestinal effect on model rats with functional dyspepsia (FD) were compared, the relationship between the changes of composition and pharmaceutical effects was analysed. Results: The gastric residue rate of the rats in the drug-treated group was significantly lower than in the control group (P<0.05), while the intestinal propulsive rates were markedly higher (P<0.05). The motilin and gastrin level in serum of the drug-treated groups had significantly increased (P<0.05) compared with the control group. Compared with the raw product group, there was an apparent reduction in gastric residual rate for ginger juice processed Rhizoma Pinelliae (GJRP)and ginger juice processed Rhizoma Coptidis (GJRC) (P<0.05). The GJ processed products groups showed a common increase in the intestinal propulsive rate (P<0.05), the motilin level of GJRP and ginger juice processed officinal magnolia bark (GJOMB) groups was significantly increased (P<0.05) and gastrin levels of all gingerprocessed groups were significantly increased (P<0.05). Meanwhile, eight types of common components were found in ginger juice, ginger juice-processed RP, OMB, and RC, in which farnesene, nerolidol, dragosantol, and a-elemene, each with pharmacological activity showed a positive relationship with gastrointestinal function of processed drugs through Pearson’s correlation analysis. Discussion and conclusion: This work provided a better understanding of ginger juice processing mechanisms and a guide to research into the common processing features of processing assistants in Chinese herbal medicine.","PeriodicalId":94103,"journal":{"name":"Journal of physical chemistry & biophysics","volume":"19 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Common Features and Mechanisms of Ginger Juice Processing Technology Based on the Composition and Gastrointestinal Effects of Chinese Herbs\",\"authors\":\"L. Zhong, Heng-Li Tong, Z. Meng, Huan Xi, Q. Gong\",\"doi\":\"10.4172/2161-0398.1000242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: All Chinese herbal medicines should be processed before they are used in clinics offering Traditional Chinese Medicine (TCM). Ginger juice is one of the process assistants and a widely-applied agent in processing many herbal medicines. Objective: In this study, the ginger juice was investigated with its processing mechanism according to its common processing function on herbal medicines, which included Rhizoma pinelliae (RP, the tuber of Pinellia ternata (Thunb.) Breit.), officinal magnolia bark (OMB, the root bark of Coptis chinensis Franch.), and Rhizoma coptidis (RC, the rhizoma of Magnolia officinalis Rehd. et Wils). Materials and Methods: The composition, especially the essential oil, of the raw ingredients and ginger juiceprocessed products and their gastrointestinal effect on model rats with functional dyspepsia (FD) were compared, the relationship between the changes of composition and pharmaceutical effects was analysed. Results: The gastric residue rate of the rats in the drug-treated group was significantly lower than in the control group (P<0.05), while the intestinal propulsive rates were markedly higher (P<0.05). The motilin and gastrin level in serum of the drug-treated groups had significantly increased (P<0.05) compared with the control group. Compared with the raw product group, there was an apparent reduction in gastric residual rate for ginger juice processed Rhizoma Pinelliae (GJRP)and ginger juice processed Rhizoma Coptidis (GJRC) (P<0.05). The GJ processed products groups showed a common increase in the intestinal propulsive rate (P<0.05), the motilin level of GJRP and ginger juice processed officinal magnolia bark (GJOMB) groups was significantly increased (P<0.05) and gastrin levels of all gingerprocessed groups were significantly increased (P<0.05). Meanwhile, eight types of common components were found in ginger juice, ginger juice-processed RP, OMB, and RC, in which farnesene, nerolidol, dragosantol, and a-elemene, each with pharmacological activity showed a positive relationship with gastrointestinal function of processed drugs through Pearson’s correlation analysis. Discussion and conclusion: This work provided a better understanding of ginger juice processing mechanisms and a guide to research into the common processing features of processing assistants in Chinese herbal medicine.\",\"PeriodicalId\":94103,\"journal\":{\"name\":\"Journal of physical chemistry & biophysics\",\"volume\":\"19 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physical chemistry & biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2161-0398.1000242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physical chemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2161-0398.1000242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

背景:所有中草药在提供中医(TCM)的诊所使用之前都应该经过加工。姜汁是一种加工助剂,在许多中草药的加工中被广泛应用。目的:根据姜汁对半夏根茎(RP)、半夏块茎(Thunb)等中草药的加工作用,探讨姜汁的加工机理。白玉兰树皮(OMB, Coptis chinensis france .)和黄连(RC, magnolia officinalis Rehd.)。外星人会)。材料与方法:比较生姜原料及姜汁制品的成分,特别是精油的成分组成及其对功能性消化不良模型大鼠的胃肠作用,分析其成分变化与药理作用的关系。结果:给药组大鼠胃残率显著低于对照组(P<0.05),肠道推进率显著高于对照组(P<0.05)。与对照组相比,各药物治疗组血清胃动素、胃泌素水平均显著升高(P<0.05)。与原料组相比,半夏姜汁和黄连姜汁的胃残率均显著降低(P<0.05)。GJ制品组肠道推进率普遍升高(P<0.05), GJRP和姜汁厚朴(GJOMB)组胃动素水平显著升高(P<0.05),各姜加工组胃泌素水平均显著升高(P<0.05)。同时,在姜汁、姜汁加工的RP、OMB和RC中发现8种常见成分,其中具有药理活性的法尼烯、橙花醇、龙糖醇和a-榄香烯通过Pearson相关分析与加工药物的胃肠功能呈正相关。讨论与结论:本研究为进一步了解姜汁加工机理提供了依据,并为研究中草药加工助剂的共同加工特征提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Common Features and Mechanisms of Ginger Juice Processing Technology Based on the Composition and Gastrointestinal Effects of Chinese Herbs
Context: All Chinese herbal medicines should be processed before they are used in clinics offering Traditional Chinese Medicine (TCM). Ginger juice is one of the process assistants and a widely-applied agent in processing many herbal medicines. Objective: In this study, the ginger juice was investigated with its processing mechanism according to its common processing function on herbal medicines, which included Rhizoma pinelliae (RP, the tuber of Pinellia ternata (Thunb.) Breit.), officinal magnolia bark (OMB, the root bark of Coptis chinensis Franch.), and Rhizoma coptidis (RC, the rhizoma of Magnolia officinalis Rehd. et Wils). Materials and Methods: The composition, especially the essential oil, of the raw ingredients and ginger juiceprocessed products and their gastrointestinal effect on model rats with functional dyspepsia (FD) were compared, the relationship between the changes of composition and pharmaceutical effects was analysed. Results: The gastric residue rate of the rats in the drug-treated group was significantly lower than in the control group (P<0.05), while the intestinal propulsive rates were markedly higher (P<0.05). The motilin and gastrin level in serum of the drug-treated groups had significantly increased (P<0.05) compared with the control group. Compared with the raw product group, there was an apparent reduction in gastric residual rate for ginger juice processed Rhizoma Pinelliae (GJRP)and ginger juice processed Rhizoma Coptidis (GJRC) (P<0.05). The GJ processed products groups showed a common increase in the intestinal propulsive rate (P<0.05), the motilin level of GJRP and ginger juice processed officinal magnolia bark (GJOMB) groups was significantly increased (P<0.05) and gastrin levels of all gingerprocessed groups were significantly increased (P<0.05). Meanwhile, eight types of common components were found in ginger juice, ginger juice-processed RP, OMB, and RC, in which farnesene, nerolidol, dragosantol, and a-elemene, each with pharmacological activity showed a positive relationship with gastrointestinal function of processed drugs through Pearson’s correlation analysis. Discussion and conclusion: This work provided a better understanding of ginger juice processing mechanisms and a guide to research into the common processing features of processing assistants in Chinese herbal medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信