半线性分数阶演化方程的非局部Cauchy问题

Jinrong Wang, Yong Zhou, Michal Feckan
{"title":"半线性分数阶演化方程的非局部Cauchy问题","authors":"Jinrong Wang, Yong Zhou, Michal Feckan","doi":"10.2478/s11533-013-0381-y","DOIUrl":null,"url":null,"abstract":"In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first result relies on a growth condition on the whole time interval via Schaefer fixed point theorem. The second result relies on a growth condition splitted into two parts, one for the subinterval containing the points associated with the nonlocal conditions, and the other for the rest of the interval via O’Regan fixed point theorem.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"21 1","pages":"911-922"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"On the nonlocal Cauchy problem for semilinear fractional order evolution equations\",\"authors\":\"Jinrong Wang, Yong Zhou, Michal Feckan\",\"doi\":\"10.2478/s11533-013-0381-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first result relies on a growth condition on the whole time interval via Schaefer fixed point theorem. The second result relies on a growth condition splitted into two parts, one for the subinterval containing the points associated with the nonlocal conditions, and the other for the rest of the interval via O’Regan fixed point theorem.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"21 1\",\"pages\":\"911-922\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0381-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0381-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

在本文中,我们发展了[Boucherif A., preup R.]的方法和技术,具有非局部初始条件的半线性演化方程,动力学。系统:。周勇,焦峰。分数阶演化方程的非局部Cauchy问题[j] ., 2007, 16(3), 507-516。真实世界的苹果。半线性分数阶演化方程的非局部Cauchy问题[j] ., 2010, 11(5), 4465-4475。给出了温和解存在的两个新的充分条件。第一个结果依靠Schaefer不动点定理在整个时间区间上的一个生长条件。第二个结果依赖于一个分成两部分的增长条件,一部分是包含与非局部条件相关的点的子区间,另一部分是通过O 'Regan不动点定理得到的区间的其余部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the nonlocal Cauchy problem for semilinear fractional order evolution equations
In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first result relies on a growth condition on the whole time interval via Schaefer fixed point theorem. The second result relies on a growth condition splitted into two parts, one for the subinterval containing the points associated with the nonlocal conditions, and the other for the rest of the interval via O’Regan fixed point theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信