多标签分类的广义k-标签集集成

Hung-Yi Lo, Shou-de Lin, H. Wang
{"title":"多标签分类的广义k-标签集集成","authors":"Hung-Yi Lo, Shou-de Lin, H. Wang","doi":"10.1109/ICASSP.2012.6288315","DOIUrl":null,"url":null,"abstract":"Label powerset (LP) method is one category of multi-label learning algorithms. It reduces the multi-label classification problem to a multi-class classification problem by treating each distinct combination of labels in the training set as a different class. This paper proposes a basis expansion model for multi-label classification, where a basis function is a LP classifier trained on a random k-labelset. The expansion coefficients are learned to minimize the global error between the prediction and the multi-label ground truth. We derive an analytic solution to learn the coefficients efficiently. We have conducted experiments using several benchmark datasets and compared our method with other state-of-the-art multi-label learning methods. The results show that our method has better or competitive performance against other methods.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"43 1","pages":"2061-2064"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized k-labelset ensemble for multi-label classification\",\"authors\":\"Hung-Yi Lo, Shou-de Lin, H. Wang\",\"doi\":\"10.1109/ICASSP.2012.6288315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Label powerset (LP) method is one category of multi-label learning algorithms. It reduces the multi-label classification problem to a multi-class classification problem by treating each distinct combination of labels in the training set as a different class. This paper proposes a basis expansion model for multi-label classification, where a basis function is a LP classifier trained on a random k-labelset. The expansion coefficients are learned to minimize the global error between the prediction and the multi-label ground truth. We derive an analytic solution to learn the coefficients efficiently. We have conducted experiments using several benchmark datasets and compared our method with other state-of-the-art multi-label learning methods. The results show that our method has better or competitive performance against other methods.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"43 1\",\"pages\":\"2061-2064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

标签功率集(LP)方法是多标签学习算法的一种。它通过将训练集中每个不同的标签组合视为不同的类别,将多标签分类问题简化为多类分类问题。本文提出了一种多标签分类的基展开模型,其中基函数是在随机k-标签集上训练的LP分类器。学习扩展系数以最小化预测与多标签真实值之间的全局误差。我们推导了一个解析解来有效地学习系数。我们使用几个基准数据集进行了实验,并将我们的方法与其他最先进的多标签学习方法进行了比较。结果表明,与其他方法相比,我们的方法具有更好或更具竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized k-labelset ensemble for multi-label classification
Label powerset (LP) method is one category of multi-label learning algorithms. It reduces the multi-label classification problem to a multi-class classification problem by treating each distinct combination of labels in the training set as a different class. This paper proposes a basis expansion model for multi-label classification, where a basis function is a LP classifier trained on a random k-labelset. The expansion coefficients are learned to minimize the global error between the prediction and the multi-label ground truth. We derive an analytic solution to learn the coefficients efficiently. We have conducted experiments using several benchmark datasets and compared our method with other state-of-the-art multi-label learning methods. The results show that our method has better or competitive performance against other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信