{"title":"基于海洋地球物理和卫星测高数据的克格伦高原海底和洋壳结构","authors":"Polina Lemenkova","doi":"10.3390/geomatics3030022","DOIUrl":null,"url":null,"abstract":"The volcanic Kerguelen Islands are formed on one of the world’s largest submarine plateaus. Located in the remote segment of the southern Indian Ocean close to Antarctica, the Kerguelen Plateau is notable for a complex tectonic origin and geologic formation related to the Cretaceous history of the continents. This is reflected in the varying age of the oceanic crust adjacent to the plateau and the highly heterogeneous bathymetry of the Kerguelen Plateau, with seafloor structure differing for the southern and northern segments. Remote sensing data derived from marine gravity and satellite radar altimetry surveys serve as an important source of information for mapping complex seafloor features. This study incorporates geospatial information from NOAA, EMAG2, WDMAM, ETOPO1, and EGM96 datasets to refine the extent and distribution of the extracted seafloor features. The cartographic joint analysis of topography, magnetic anomalies, tectonic and gravity grids is based on the integrated mapping performed using the Generic Mapping Tools (GMT) programming suite. Mapping of the submerged features (Broken Ridge, Crozet Islands, seafloor fabric, orientation, and frequency of magnetic anomalies) enables analysis of their correspondence with free-air gravity and magnetic anomalies, geodynamic setting, and seabed structure in the southwest Indian Ocean. The results show that integrating the datasets using advanced cartographic scripting language improves identification and visualization of the seabed objects. The results include 11 new maps of the region covering the Kerguelen Plateau and southwest Indian Ocean. This study contributes to increasing the knowledge of the seafloor structure in the French Southern and Antarctic Lands.","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"15 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seafloor and Ocean Crust Structure of the Kerguelen Plateau from Marine Geophysical and Satellite Altimetry Datasets\",\"authors\":\"Polina Lemenkova\",\"doi\":\"10.3390/geomatics3030022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The volcanic Kerguelen Islands are formed on one of the world’s largest submarine plateaus. Located in the remote segment of the southern Indian Ocean close to Antarctica, the Kerguelen Plateau is notable for a complex tectonic origin and geologic formation related to the Cretaceous history of the continents. This is reflected in the varying age of the oceanic crust adjacent to the plateau and the highly heterogeneous bathymetry of the Kerguelen Plateau, with seafloor structure differing for the southern and northern segments. Remote sensing data derived from marine gravity and satellite radar altimetry surveys serve as an important source of information for mapping complex seafloor features. This study incorporates geospatial information from NOAA, EMAG2, WDMAM, ETOPO1, and EGM96 datasets to refine the extent and distribution of the extracted seafloor features. The cartographic joint analysis of topography, magnetic anomalies, tectonic and gravity grids is based on the integrated mapping performed using the Generic Mapping Tools (GMT) programming suite. Mapping of the submerged features (Broken Ridge, Crozet Islands, seafloor fabric, orientation, and frequency of magnetic anomalies) enables analysis of their correspondence with free-air gravity and magnetic anomalies, geodynamic setting, and seabed structure in the southwest Indian Ocean. The results show that integrating the datasets using advanced cartographic scripting language improves identification and visualization of the seabed objects. The results include 11 new maps of the region covering the Kerguelen Plateau and southwest Indian Ocean. This study contributes to increasing the knowledge of the seafloor structure in the French Southern and Antarctic Lands.\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/geomatics3030022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geomatics3030022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Seafloor and Ocean Crust Structure of the Kerguelen Plateau from Marine Geophysical and Satellite Altimetry Datasets
The volcanic Kerguelen Islands are formed on one of the world’s largest submarine plateaus. Located in the remote segment of the southern Indian Ocean close to Antarctica, the Kerguelen Plateau is notable for a complex tectonic origin and geologic formation related to the Cretaceous history of the continents. This is reflected in the varying age of the oceanic crust adjacent to the plateau and the highly heterogeneous bathymetry of the Kerguelen Plateau, with seafloor structure differing for the southern and northern segments. Remote sensing data derived from marine gravity and satellite radar altimetry surveys serve as an important source of information for mapping complex seafloor features. This study incorporates geospatial information from NOAA, EMAG2, WDMAM, ETOPO1, and EGM96 datasets to refine the extent and distribution of the extracted seafloor features. The cartographic joint analysis of topography, magnetic anomalies, tectonic and gravity grids is based on the integrated mapping performed using the Generic Mapping Tools (GMT) programming suite. Mapping of the submerged features (Broken Ridge, Crozet Islands, seafloor fabric, orientation, and frequency of magnetic anomalies) enables analysis of their correspondence with free-air gravity and magnetic anomalies, geodynamic setting, and seabed structure in the southwest Indian Ocean. The results show that integrating the datasets using advanced cartographic scripting language improves identification and visualization of the seabed objects. The results include 11 new maps of the region covering the Kerguelen Plateau and southwest Indian Ocean. This study contributes to increasing the knowledge of the seafloor structure in the French Southern and Antarctic Lands.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements