基于模糊c均值聚类模型约束的非结构化网格直流电阻率二维反演

IF 1 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL
Kaidi Xu, Man Li, Zhiyong Zhang, Ke Yi, F. Zhou
{"title":"基于模糊c均值聚类模型约束的非结构化网格直流电阻率二维反演","authors":"Kaidi Xu, Man Li, Zhiyong Zhang, Ke Yi, F. Zhou","doi":"10.32389/jeeg22-028","DOIUrl":null,"url":null,"abstract":"Direct current resistivity prospecting is a commonly geophysical method for environmental and engineering applications. In this paper, we propose a fuzzy C-means clustering model constrained inversion algorithm for two-dimensional DC resistivity. To fit arbitrary geological structure and surface of the earth, our inversion algorithm is developed based on unstructured model mesh. To be consistent with the geological structure, the fuzzy C-means clustering model constraint is added to the inversion cost function with the minimum structure model constraint, and the Gauss-Newton optimization method is used to seek solutions of the nonlinear inverse problem. Finally, we verify the performance of our algorithm by synthetic and field data sets. The results show that the resistivity and boundary can be better restored when the correct number and value of priori cluster centers were set. By testing the field data, the inversion algorithm can obtain obvious abnormal boundaries.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional Inversion of DC Resistivity Data on Unstructured Grids Using Fuzzy C-means Clustering Model Constraint\",\"authors\":\"Kaidi Xu, Man Li, Zhiyong Zhang, Ke Yi, F. Zhou\",\"doi\":\"10.32389/jeeg22-028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct current resistivity prospecting is a commonly geophysical method for environmental and engineering applications. In this paper, we propose a fuzzy C-means clustering model constrained inversion algorithm for two-dimensional DC resistivity. To fit arbitrary geological structure and surface of the earth, our inversion algorithm is developed based on unstructured model mesh. To be consistent with the geological structure, the fuzzy C-means clustering model constraint is added to the inversion cost function with the minimum structure model constraint, and the Gauss-Newton optimization method is used to seek solutions of the nonlinear inverse problem. Finally, we verify the performance of our algorithm by synthetic and field data sets. The results show that the resistivity and boundary can be better restored when the correct number and value of priori cluster centers were set. By testing the field data, the inversion algorithm can obtain obvious abnormal boundaries.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.32389/jeeg22-028\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg22-028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

直流电阻率法是环境和工程中常用的地球物理勘探方法。本文提出了一种模糊c均值聚类模型约束的二维直流电阻率反演算法。为了适应任意地质构造和地表,本文提出了基于非结构化模型网格的反演算法。为了与地质构造保持一致,在构造模型约束最小的反演代价函数中加入模糊c均值聚类模型约束,采用高斯-牛顿优化方法求解非线性反演问题。最后,通过综合数据集和现场数据集验证了算法的性能。结果表明,设置正确的先验簇中心数和值,可以较好地恢复电阻率和边界。通过对现场数据的测试,反演算法可以得到明显的异常边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-dimensional Inversion of DC Resistivity Data on Unstructured Grids Using Fuzzy C-means Clustering Model Constraint
Direct current resistivity prospecting is a commonly geophysical method for environmental and engineering applications. In this paper, we propose a fuzzy C-means clustering model constrained inversion algorithm for two-dimensional DC resistivity. To fit arbitrary geological structure and surface of the earth, our inversion algorithm is developed based on unstructured model mesh. To be consistent with the geological structure, the fuzzy C-means clustering model constraint is added to the inversion cost function with the minimum structure model constraint, and the Gauss-Newton optimization method is used to seek solutions of the nonlinear inverse problem. Finally, we verify the performance of our algorithm by synthetic and field data sets. The results show that the resistivity and boundary can be better restored when the correct number and value of priori cluster centers were set. By testing the field data, the inversion algorithm can obtain obvious abnormal boundaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental and Engineering Geophysics
Journal of Environmental and Engineering Geophysics 地学-地球化学与地球物理
CiteScore
2.70
自引率
0.00%
发文量
13
审稿时长
6 months
期刊介绍: The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信