{"title":"二维非双曲平衡点附近构造局部Lyapunov函数的数值验证方法","authors":"Koki Nitta, Toshiki Sasaki, N. Yamamoto","doi":"10.14495/jsiaml.14.33","DOIUrl":null,"url":null,"abstract":"In Terasaka et al. JSIAM Lett. (2020), we have proposed numerical verification methods to construct local Lyapunov functions around non-hyperbolic equilibria using non-linear transformations by up to third degree polynomials. In the present study, we extend these methods by proving that polynomials of an arbitrary degree can be applied to define the transformations and show an example problem where we have to use a fifth-degree polynomial to construct local Lyapunov functions.","PeriodicalId":42099,"journal":{"name":"JSIAM Letters","volume":"23 1","pages":"33-36"},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On numerical verification methods to construct local Lyapunov functions around non-hyperbolic equilibria for two-dimensional cases\",\"authors\":\"Koki Nitta, Toshiki Sasaki, N. Yamamoto\",\"doi\":\"10.14495/jsiaml.14.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Terasaka et al. JSIAM Lett. (2020), we have proposed numerical verification methods to construct local Lyapunov functions around non-hyperbolic equilibria using non-linear transformations by up to third degree polynomials. In the present study, we extend these methods by proving that polynomials of an arbitrary degree can be applied to define the transformations and show an example problem where we have to use a fifth-degree polynomial to construct local Lyapunov functions.\",\"PeriodicalId\":42099,\"journal\":{\"name\":\"JSIAM Letters\",\"volume\":\"23 1\",\"pages\":\"33-36\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSIAM Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14495/jsiaml.14.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSIAM Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14495/jsiaml.14.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On numerical verification methods to construct local Lyapunov functions around non-hyperbolic equilibria for two-dimensional cases
In Terasaka et al. JSIAM Lett. (2020), we have proposed numerical verification methods to construct local Lyapunov functions around non-hyperbolic equilibria using non-linear transformations by up to third degree polynomials. In the present study, we extend these methods by proving that polynomials of an arbitrary degree can be applied to define the transformations and show an example problem where we have to use a fifth-degree polynomial to construct local Lyapunov functions.