基于变异性的视频序列合成测试方法

J. Galindo, Mauricio Alférez, M. Acher, B. Baudry, David Benavides
{"title":"基于变异性的视频序列合成测试方法","authors":"J. Galindo, Mauricio Alférez, M. Acher, B. Baudry, David Benavides","doi":"10.1145/2610384.2610411","DOIUrl":null,"url":null,"abstract":"A key problem when developing video processing software is the difficulty to test different input combinations. In this paper, we present VANE, a variability-based testing approach to derive video sequence variants. The ideas of VANE are i) to encode in a variability model what can vary within a video sequence; ii) to exploit the variability model to generate testable configurations; iii) to synthesize variants of video sequences corresponding to configurations. VANE computes T-wise covering sets while optimizing a function over attributes. Also, we present a preliminary validation of the scalability and practicality of VANE in the context of an industrial project involving the test of video processing algorithms.","PeriodicalId":20624,"journal":{"name":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"24 1","pages":"293-303"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A variability-based testing approach for synthesizing video sequences\",\"authors\":\"J. Galindo, Mauricio Alférez, M. Acher, B. Baudry, David Benavides\",\"doi\":\"10.1145/2610384.2610411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key problem when developing video processing software is the difficulty to test different input combinations. In this paper, we present VANE, a variability-based testing approach to derive video sequence variants. The ideas of VANE are i) to encode in a variability model what can vary within a video sequence; ii) to exploit the variability model to generate testable configurations; iii) to synthesize variants of video sequences corresponding to configurations. VANE computes T-wise covering sets while optimizing a function over attributes. Also, we present a preliminary validation of the scalability and practicality of VANE in the context of an industrial project involving the test of video processing algorithms.\",\"PeriodicalId\":20624,\"journal\":{\"name\":\"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"24 1\",\"pages\":\"293-303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2610384.2610411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2610384.2610411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

开发视频处理软件时的一个关键问题是难以测试不同的输入组合。在本文中,我们提出了VANE,一种基于可变性的测试方法来获得视频序列的变体。VANE的思想是i)在可变性模型中编码可以在视频序列中变化的内容;Ii)利用可变性模型生成可测试的配置;Iii)合成与配置相对应的视频序列变体。VANE计算T-wise覆盖集,同时在属性上优化函数。此外,我们在一个涉及视频处理算法测试的工业项目背景下,对VANE的可扩展性和实用性进行了初步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variability-based testing approach for synthesizing video sequences
A key problem when developing video processing software is the difficulty to test different input combinations. In this paper, we present VANE, a variability-based testing approach to derive video sequence variants. The ideas of VANE are i) to encode in a variability model what can vary within a video sequence; ii) to exploit the variability model to generate testable configurations; iii) to synthesize variants of video sequences corresponding to configurations. VANE computes T-wise covering sets while optimizing a function over attributes. Also, we present a preliminary validation of the scalability and practicality of VANE in the context of an industrial project involving the test of video processing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信