推断跨多个异构社会网络的锚链接

Xiangnan Kong, Jiawei Zhang, Philip S. Yu
{"title":"推断跨多个异构社会网络的锚链接","authors":"Xiangnan Kong, Jiawei Zhang, Philip S. Yu","doi":"10.1145/2505515.2505531","DOIUrl":null,"url":null,"abstract":"Online social networks can often be represented as heterogeneous information networks containing abundant information about: who, where, when and what. Nowadays, people are usually involved in multiple social networks simultaneously. The multiple accounts of the same user in different networks are mostly isolated from each other without any connection between them. Discovering the correspondence of these accounts across multiple social networks is a crucial prerequisite for many interesting inter-network applications, such as link recommendation and community analysis using information from multiple networks. In this paper, we study the problem of anchor link prediction across multiple heterogeneous social networks, i.e., discovering the correspondence among different accounts of the same user. Unlike most prior work on link prediction and network alignment, we assume that the anchor links are one-to-one relationships (i.e., no two edges share a common endpoint) between the accounts in two social networks, and a small number of anchor links are known beforehand. We propose to extract heterogeneous features from multiple heterogeneous networks for anchor link prediction, including user's social, spatial, temporal and text information. Then we formulate the inference problem for anchor links as a stable matching problem between the two sets of user accounts in two different networks. An effective solution, MNA (Multi-Network Anchoring), is derived to infer anchor links w.r.t. the one-to-one constraint. Extensive experiments on two real-world heterogeneous social networks show that our MNA model consistently outperform other commonly-used baselines on anchor link prediction.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"336","resultStr":"{\"title\":\"Inferring anchor links across multiple heterogeneous social networks\",\"authors\":\"Xiangnan Kong, Jiawei Zhang, Philip S. Yu\",\"doi\":\"10.1145/2505515.2505531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online social networks can often be represented as heterogeneous information networks containing abundant information about: who, where, when and what. Nowadays, people are usually involved in multiple social networks simultaneously. The multiple accounts of the same user in different networks are mostly isolated from each other without any connection between them. Discovering the correspondence of these accounts across multiple social networks is a crucial prerequisite for many interesting inter-network applications, such as link recommendation and community analysis using information from multiple networks. In this paper, we study the problem of anchor link prediction across multiple heterogeneous social networks, i.e., discovering the correspondence among different accounts of the same user. Unlike most prior work on link prediction and network alignment, we assume that the anchor links are one-to-one relationships (i.e., no two edges share a common endpoint) between the accounts in two social networks, and a small number of anchor links are known beforehand. We propose to extract heterogeneous features from multiple heterogeneous networks for anchor link prediction, including user's social, spatial, temporal and text information. Then we formulate the inference problem for anchor links as a stable matching problem between the two sets of user accounts in two different networks. An effective solution, MNA (Multi-Network Anchoring), is derived to infer anchor links w.r.t. the one-to-one constraint. Extensive experiments on two real-world heterogeneous social networks show that our MNA model consistently outperform other commonly-used baselines on anchor link prediction.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"336\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 336

摘要

在线社交网络通常可以被表示为异构信息网络,其中包含有关何人、何地、何时和何事的丰富信息。如今,人们通常同时参与多个社交网络。同一用户在不同网络中的多个账号大多是相互隔离的,彼此之间没有任何连接。对于许多有趣的网络间应用程序(例如使用来自多个网络的信息的链接推荐和社区分析)来说,发现这些帐户跨多个社会网络的对应关系是一个至关重要的先决条件。在本文中,我们研究了跨多个异构社交网络的锚链接预测问题,即发现同一用户的不同帐户之间的对应关系。与之前大多数关于链接预测和网络对齐的工作不同,我们假设两个社交网络中的账户之间的锚链接是一对一的关系(即没有两条边共享一个共同的端点),并且事先知道少量锚链接。我们提出从多个异构网络中提取异构特征,包括用户的社会信息、空间信息、时间信息和文本信息,用于锚链接预测。然后,我们将锚链接的推理问题表述为两个不同网络中两组用户帐户之间的稳定匹配问题。推导出了一种有效的解决方案,即MNA(多网络锚定),它可以在一对一约束的基础上推断锚点链接。在两个真实的异构社交网络上进行的大量实验表明,我们的MNA模型在锚链接预测方面始终优于其他常用的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring anchor links across multiple heterogeneous social networks
Online social networks can often be represented as heterogeneous information networks containing abundant information about: who, where, when and what. Nowadays, people are usually involved in multiple social networks simultaneously. The multiple accounts of the same user in different networks are mostly isolated from each other without any connection between them. Discovering the correspondence of these accounts across multiple social networks is a crucial prerequisite for many interesting inter-network applications, such as link recommendation and community analysis using information from multiple networks. In this paper, we study the problem of anchor link prediction across multiple heterogeneous social networks, i.e., discovering the correspondence among different accounts of the same user. Unlike most prior work on link prediction and network alignment, we assume that the anchor links are one-to-one relationships (i.e., no two edges share a common endpoint) between the accounts in two social networks, and a small number of anchor links are known beforehand. We propose to extract heterogeneous features from multiple heterogeneous networks for anchor link prediction, including user's social, spatial, temporal and text information. Then we formulate the inference problem for anchor links as a stable matching problem between the two sets of user accounts in two different networks. An effective solution, MNA (Multi-Network Anchoring), is derived to infer anchor links w.r.t. the one-to-one constraint. Extensive experiments on two real-world heterogeneous social networks show that our MNA model consistently outperform other commonly-used baselines on anchor link prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信