给定次的有理曲线的定义域

IF 0.3 4区 数学 Q4 MATHEMATICS
D. Holmes, Nick Rome
{"title":"给定次的有理曲线的定义域","authors":"D. Holmes, Nick Rome","doi":"10.5802/jtnb.1123","DOIUrl":null,"url":null,"abstract":"Kontsevich and Manin gave a formula for the number Ne of rational plane curves of degree e through 3e−1 points in general position in the plane. When these 3e−1 points have coordinates in the rational numbers, the corresponding set of Ne rational curves has a natural Galois-module structure. We make some extremely preliminary investigations into this Galois module structure, and relate this to the deck transformations of the generic fibre of the product of the evaluation maps on the moduli space of maps. We then study the asymptotics of the number of rational points on hypersurfaces of low degree, and use this to generalise our results by replacing the projective plane by such a hypersurface.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"26 1","pages":"291-310"},"PeriodicalIF":0.3000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fields of definition of rational curves of a given degree\",\"authors\":\"D. Holmes, Nick Rome\",\"doi\":\"10.5802/jtnb.1123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kontsevich and Manin gave a formula for the number Ne of rational plane curves of degree e through 3e−1 points in general position in the plane. When these 3e−1 points have coordinates in the rational numbers, the corresponding set of Ne rational curves has a natural Galois-module structure. We make some extremely preliminary investigations into this Galois module structure, and relate this to the deck transformations of the generic fibre of the product of the evaluation maps on the moduli space of maps. We then study the asymptotics of the number of rational points on hypersurfaces of low degree, and use this to generalise our results by replacing the projective plane by such a hypersurface.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\"26 1\",\"pages\":\"291-310\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1123\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1123","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Kontsevich和Manin给出了平面上一般位置上e到3e−1次有理平面曲线的个数Ne的公式。当这3e−1点的坐标为有理数时,对应的Ne个有理数曲线集具有自然的伽罗瓦模结构。我们对这种伽罗瓦模结构作了一些非常初步的研究,并将其与评价映射的积的一般纤维在映射的模空间上的叠变换联系起来。然后,我们研究了低次超曲面上有理点数目的渐近性,并用这样的超曲面代替射影平面来推广我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fields of definition of rational curves of a given degree
Kontsevich and Manin gave a formula for the number Ne of rational plane curves of degree e through 3e−1 points in general position in the plane. When these 3e−1 points have coordinates in the rational numbers, the corresponding set of Ne rational curves has a natural Galois-module structure. We make some extremely preliminary investigations into this Galois module structure, and relate this to the deck transformations of the generic fibre of the product of the evaluation maps on the moduli space of maps. We then study the asymptotics of the number of rational points on hypersurfaces of low degree, and use this to generalise our results by replacing the projective plane by such a hypersurface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信