S. Massucco, G. Mosaico, M. Saviozzi, F. Silvestro, A. Fidigatti, E. Ragaini
{"title":"基于流聚类算法的马尔可夫链负荷建模方法","authors":"S. Massucco, G. Mosaico, M. Saviozzi, F. Silvestro, A. Fidigatti, E. Ragaini","doi":"10.23919/AEIT50178.2020.9241159","DOIUrl":null,"url":null,"abstract":"Advanced Metering Infrastructure (AMI) is improving the quality and quantity of information within power systems. Thus, these data should be wisely used for efficient management and control. For these reasons, advanced functionalities have to be implemented in order to deal with the massive data stream. In this work, a stream clustering algorithm is used to model any load with a Markov Chain (MC). This algorithm is able to describe the typical load profile in real-time, thanks to a design and an implementation that minimizes the computational burden. The proposed procedure has been tested on an IEEE industrial machines dataset. In addition, a discussion on the parameter selection is provided.","PeriodicalId":6689,"journal":{"name":"2020 AEIT International Annual Conference (AEIT)","volume":"3 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Markov Chain Load Modeling Approach through a Stream Clustering Algorithm\",\"authors\":\"S. Massucco, G. Mosaico, M. Saviozzi, F. Silvestro, A. Fidigatti, E. Ragaini\",\"doi\":\"10.23919/AEIT50178.2020.9241159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced Metering Infrastructure (AMI) is improving the quality and quantity of information within power systems. Thus, these data should be wisely used for efficient management and control. For these reasons, advanced functionalities have to be implemented in order to deal with the massive data stream. In this work, a stream clustering algorithm is used to model any load with a Markov Chain (MC). This algorithm is able to describe the typical load profile in real-time, thanks to a design and an implementation that minimizes the computational burden. The proposed procedure has been tested on an IEEE industrial machines dataset. In addition, a discussion on the parameter selection is provided.\",\"PeriodicalId\":6689,\"journal\":{\"name\":\"2020 AEIT International Annual Conference (AEIT)\",\"volume\":\"3 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT50178.2020.9241159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT50178.2020.9241159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Markov Chain Load Modeling Approach through a Stream Clustering Algorithm
Advanced Metering Infrastructure (AMI) is improving the quality and quantity of information within power systems. Thus, these data should be wisely used for efficient management and control. For these reasons, advanced functionalities have to be implemented in order to deal with the massive data stream. In this work, a stream clustering algorithm is used to model any load with a Markov Chain (MC). This algorithm is able to describe the typical load profile in real-time, thanks to a design and an implementation that minimizes the computational burden. The proposed procedure has been tested on an IEEE industrial machines dataset. In addition, a discussion on the parameter selection is provided.