基于流聚类算法的马尔可夫链负荷建模方法

S. Massucco, G. Mosaico, M. Saviozzi, F. Silvestro, A. Fidigatti, E. Ragaini
{"title":"基于流聚类算法的马尔可夫链负荷建模方法","authors":"S. Massucco, G. Mosaico, M. Saviozzi, F. Silvestro, A. Fidigatti, E. Ragaini","doi":"10.23919/AEIT50178.2020.9241159","DOIUrl":null,"url":null,"abstract":"Advanced Metering Infrastructure (AMI) is improving the quality and quantity of information within power systems. Thus, these data should be wisely used for efficient management and control. For these reasons, advanced functionalities have to be implemented in order to deal with the massive data stream. In this work, a stream clustering algorithm is used to model any load with a Markov Chain (MC). This algorithm is able to describe the typical load profile in real-time, thanks to a design and an implementation that minimizes the computational burden. The proposed procedure has been tested on an IEEE industrial machines dataset. In addition, a discussion on the parameter selection is provided.","PeriodicalId":6689,"journal":{"name":"2020 AEIT International Annual Conference (AEIT)","volume":"3 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Markov Chain Load Modeling Approach through a Stream Clustering Algorithm\",\"authors\":\"S. Massucco, G. Mosaico, M. Saviozzi, F. Silvestro, A. Fidigatti, E. Ragaini\",\"doi\":\"10.23919/AEIT50178.2020.9241159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced Metering Infrastructure (AMI) is improving the quality and quantity of information within power systems. Thus, these data should be wisely used for efficient management and control. For these reasons, advanced functionalities have to be implemented in order to deal with the massive data stream. In this work, a stream clustering algorithm is used to model any load with a Markov Chain (MC). This algorithm is able to describe the typical load profile in real-time, thanks to a design and an implementation that minimizes the computational burden. The proposed procedure has been tested on an IEEE industrial machines dataset. In addition, a discussion on the parameter selection is provided.\",\"PeriodicalId\":6689,\"journal\":{\"name\":\"2020 AEIT International Annual Conference (AEIT)\",\"volume\":\"3 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AEIT International Annual Conference (AEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEIT50178.2020.9241159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT50178.2020.9241159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

先进计量基础设施(AMI)正在提高电力系统内信息的质量和数量。因此,这些数据应该明智地用于有效的管理和控制。由于这些原因,必须实现高级功能以处理大量数据流。本文采用一种流聚类算法,用马尔可夫链(MC)对任意负载进行建模。该算法能够实时描述典型的负载概况,这要归功于最小化计算负担的设计和实现。所提出的程序已在IEEE工业机器数据集上进行了测试。此外,还对参数的选择进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Markov Chain Load Modeling Approach through a Stream Clustering Algorithm
Advanced Metering Infrastructure (AMI) is improving the quality and quantity of information within power systems. Thus, these data should be wisely used for efficient management and control. For these reasons, advanced functionalities have to be implemented in order to deal with the massive data stream. In this work, a stream clustering algorithm is used to model any load with a Markov Chain (MC). This algorithm is able to describe the typical load profile in real-time, thanks to a design and an implementation that minimizes the computational burden. The proposed procedure has been tested on an IEEE industrial machines dataset. In addition, a discussion on the parameter selection is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信