事件推荐系统的最优混合分类模型

IF 0.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nithya Bn, D. Geetha, Manish Kumar
{"title":"事件推荐系统的最优混合分类模型","authors":"Nithya Bn, D. Geetha, Manish Kumar","doi":"10.3233/web-220137","DOIUrl":null,"url":null,"abstract":"There is a growing need for recommender systems and other ML-based systems as an abundance of data is now available across all industries. Various industries are currently using recommender systems in slightly different ways. These programs utilize algorithms to propose appropriate products to consumers based on their prior choices and interactions. Moreover, Systems for recommending events to users suggest pertinent happenings that they might find interesting. As opposed to an object recommender that suggests books or movies; event-based recommender systems typically require distinct algorithms. A developed event recommendation method is introduced which includes two stages: feature extraction and recommendation. In stage, I, a Set of features like personal willingness, community willingness, informative content, edge weight, and node interest degree are extracted. Stage II of the event recommendation system performs a hybrid classification by combining LSTM and CNN. In the LSTM classifier, optimal tuning is done by Improvised Cat and Mouse optimization (ICMO) algorithm. The results of the ICMO technique at an 80% training percentage have the maximum sensitivity value of 95.19%, whereas those of the existing approaches SSA, DINGO, BOA, and CMBO have values of 93.89%, 93.35%, 92.36%, and 92.24%. Finally, the best result is then determined by evaluating the whole performance.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal hybrid classification model for event recommendation system\",\"authors\":\"Nithya Bn, D. Geetha, Manish Kumar\",\"doi\":\"10.3233/web-220137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing need for recommender systems and other ML-based systems as an abundance of data is now available across all industries. Various industries are currently using recommender systems in slightly different ways. These programs utilize algorithms to propose appropriate products to consumers based on their prior choices and interactions. Moreover, Systems for recommending events to users suggest pertinent happenings that they might find interesting. As opposed to an object recommender that suggests books or movies; event-based recommender systems typically require distinct algorithms. A developed event recommendation method is introduced which includes two stages: feature extraction and recommendation. In stage, I, a Set of features like personal willingness, community willingness, informative content, edge weight, and node interest degree are extracted. Stage II of the event recommendation system performs a hybrid classification by combining LSTM and CNN. In the LSTM classifier, optimal tuning is done by Improvised Cat and Mouse optimization (ICMO) algorithm. The results of the ICMO technique at an 80% training percentage have the maximum sensitivity value of 95.19%, whereas those of the existing approaches SSA, DINGO, BOA, and CMBO have values of 93.89%, 93.35%, 92.36%, and 92.24%. Finally, the best result is then determined by evaluating the whole performance.\",\"PeriodicalId\":42775,\"journal\":{\"name\":\"Web Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/web-220137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-220137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于现在所有行业都有丰富的数据,因此对推荐系统和其他基于ml的系统的需求越来越大。目前,不同行业使用推荐系统的方式略有不同。这些程序利用算法根据消费者之前的选择和互动向他们推荐合适的产品。此外,向用户推荐事件的系统会向用户推荐他们可能感兴趣的相关事件。与推荐书籍或电影的对象推荐相反;基于事件的推荐系统通常需要不同的算法。介绍了一种改进的事件推荐方法,该方法包括特征提取和推荐两个阶段。阶段1,提取个人意愿、社区意愿、信息量、边缘权重、节点兴趣度等特征。事件推荐系统的第二阶段将LSTM和CNN相结合进行混合分类。在LSTM分类器中,采用简易猫鼠优化(ICMO)算法进行最优调优。在训练率为80%时,ICMO技术的最大灵敏度值为95.19%,而现有的SSA、DINGO、BOA和CMBO方法的最大灵敏度值分别为93.89%、93.35%、92.36%和92.24%。最后,通过评估整体性能来确定最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal hybrid classification model for event recommendation system
There is a growing need for recommender systems and other ML-based systems as an abundance of data is now available across all industries. Various industries are currently using recommender systems in slightly different ways. These programs utilize algorithms to propose appropriate products to consumers based on their prior choices and interactions. Moreover, Systems for recommending events to users suggest pertinent happenings that they might find interesting. As opposed to an object recommender that suggests books or movies; event-based recommender systems typically require distinct algorithms. A developed event recommendation method is introduced which includes two stages: feature extraction and recommendation. In stage, I, a Set of features like personal willingness, community willingness, informative content, edge weight, and node interest degree are extracted. Stage II of the event recommendation system performs a hybrid classification by combining LSTM and CNN. In the LSTM classifier, optimal tuning is done by Improvised Cat and Mouse optimization (ICMO) algorithm. The results of the ICMO technique at an 80% training percentage have the maximum sensitivity value of 95.19%, whereas those of the existing approaches SSA, DINGO, BOA, and CMBO have values of 93.89%, 93.35%, 92.36%, and 92.24%. Finally, the best result is then determined by evaluating the whole performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Web Intelligence
Web Intelligence COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
0.90
自引率
0.00%
发文量
35
期刊介绍: Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信