{"title":"事件推荐系统的最优混合分类模型","authors":"Nithya Bn, D. Geetha, Manish Kumar","doi":"10.3233/web-220137","DOIUrl":null,"url":null,"abstract":"There is a growing need for recommender systems and other ML-based systems as an abundance of data is now available across all industries. Various industries are currently using recommender systems in slightly different ways. These programs utilize algorithms to propose appropriate products to consumers based on their prior choices and interactions. Moreover, Systems for recommending events to users suggest pertinent happenings that they might find interesting. As opposed to an object recommender that suggests books or movies; event-based recommender systems typically require distinct algorithms. A developed event recommendation method is introduced which includes two stages: feature extraction and recommendation. In stage, I, a Set of features like personal willingness, community willingness, informative content, edge weight, and node interest degree are extracted. Stage II of the event recommendation system performs a hybrid classification by combining LSTM and CNN. In the LSTM classifier, optimal tuning is done by Improvised Cat and Mouse optimization (ICMO) algorithm. The results of the ICMO technique at an 80% training percentage have the maximum sensitivity value of 95.19%, whereas those of the existing approaches SSA, DINGO, BOA, and CMBO have values of 93.89%, 93.35%, 92.36%, and 92.24%. Finally, the best result is then determined by evaluating the whole performance.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal hybrid classification model for event recommendation system\",\"authors\":\"Nithya Bn, D. Geetha, Manish Kumar\",\"doi\":\"10.3233/web-220137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing need for recommender systems and other ML-based systems as an abundance of data is now available across all industries. Various industries are currently using recommender systems in slightly different ways. These programs utilize algorithms to propose appropriate products to consumers based on their prior choices and interactions. Moreover, Systems for recommending events to users suggest pertinent happenings that they might find interesting. As opposed to an object recommender that suggests books or movies; event-based recommender systems typically require distinct algorithms. A developed event recommendation method is introduced which includes two stages: feature extraction and recommendation. In stage, I, a Set of features like personal willingness, community willingness, informative content, edge weight, and node interest degree are extracted. Stage II of the event recommendation system performs a hybrid classification by combining LSTM and CNN. In the LSTM classifier, optimal tuning is done by Improvised Cat and Mouse optimization (ICMO) algorithm. The results of the ICMO technique at an 80% training percentage have the maximum sensitivity value of 95.19%, whereas those of the existing approaches SSA, DINGO, BOA, and CMBO have values of 93.89%, 93.35%, 92.36%, and 92.24%. Finally, the best result is then determined by evaluating the whole performance.\",\"PeriodicalId\":42775,\"journal\":{\"name\":\"Web Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/web-220137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-220137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Optimal hybrid classification model for event recommendation system
There is a growing need for recommender systems and other ML-based systems as an abundance of data is now available across all industries. Various industries are currently using recommender systems in slightly different ways. These programs utilize algorithms to propose appropriate products to consumers based on their prior choices and interactions. Moreover, Systems for recommending events to users suggest pertinent happenings that they might find interesting. As opposed to an object recommender that suggests books or movies; event-based recommender systems typically require distinct algorithms. A developed event recommendation method is introduced which includes two stages: feature extraction and recommendation. In stage, I, a Set of features like personal willingness, community willingness, informative content, edge weight, and node interest degree are extracted. Stage II of the event recommendation system performs a hybrid classification by combining LSTM and CNN. In the LSTM classifier, optimal tuning is done by Improvised Cat and Mouse optimization (ICMO) algorithm. The results of the ICMO technique at an 80% training percentage have the maximum sensitivity value of 95.19%, whereas those of the existing approaches SSA, DINGO, BOA, and CMBO have values of 93.89%, 93.35%, 92.36%, and 92.24%. Finally, the best result is then determined by evaluating the whole performance.
期刊介绍:
Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]