基于参数统计偏差的神经网络隐写分析

Q4 Engineering
Yi Yin, Weiming Zhang, Nenghai Yu, Kejiang Chen
{"title":"基于参数统计偏差的神经网络隐写分析","authors":"Yi Yin, Weiming Zhang, Nenghai Yu, Kejiang Chen","doi":"10.52396/justc-2021-0197","DOIUrl":null,"url":null,"abstract":"Many pretrained deep learning models have been released to help engineers and researchers develop deep learning-based systems or conduct research with minimall effort. Previous work has shown that at secret message can be embedded in neural network parameters without compromising the accuracy of the model. Malicious developers can, therefore, hide malware or other baneful information in pretrained models, causing harm to society. Hence, reliable detection of these vicious pretrained models is urgently needed. We analyze existing approaches for hiding messages and find that they will ineluctably cause biases in the parameter statistics. Therefore, we propose steganalysis methods for steganography on neural network parameters that extract statistics from benign and malicious models and build classifiers based on the extracted statistics. To the best of our knowledge, this is the first study on neural network steganalysis. The experimental results reveal that our proposed algorithm can effectively detect a model with an embedded message. Notably, our detection methods are still valid in cases where the payload of the stego model is low.","PeriodicalId":17548,"journal":{"name":"中国科学技术大学学报","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Steganalysis of neural networks based on parameter statistical bias\",\"authors\":\"Yi Yin, Weiming Zhang, Nenghai Yu, Kejiang Chen\",\"doi\":\"10.52396/justc-2021-0197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many pretrained deep learning models have been released to help engineers and researchers develop deep learning-based systems or conduct research with minimall effort. Previous work has shown that at secret message can be embedded in neural network parameters without compromising the accuracy of the model. Malicious developers can, therefore, hide malware or other baneful information in pretrained models, causing harm to society. Hence, reliable detection of these vicious pretrained models is urgently needed. We analyze existing approaches for hiding messages and find that they will ineluctably cause biases in the parameter statistics. Therefore, we propose steganalysis methods for steganography on neural network parameters that extract statistics from benign and malicious models and build classifiers based on the extracted statistics. To the best of our knowledge, this is the first study on neural network steganalysis. The experimental results reveal that our proposed algorithm can effectively detect a model with an embedded message. Notably, our detection methods are still valid in cases where the payload of the stego model is low.\",\"PeriodicalId\":17548,\"journal\":{\"name\":\"中国科学技术大学学报\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国科学技术大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.52396/justc-2021-0197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国科学技术大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.52396/justc-2021-0197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

许多预先训练的深度学习模型已经发布,以帮助工程师和研究人员开发基于深度学习的系统或以最小的努力进行研究。先前的研究表明,秘密信息可以嵌入到神经网络参数中,而不会影响模型的准确性。因此,恶意开发人员可以将恶意软件或其他有害信息隐藏在预训练的模型中,从而对社会造成危害。因此,迫切需要可靠地检测这些恶性预训练模型。我们分析了现有的隐藏消息的方法,发现它们不可避免地会在参数统计中引起偏差。因此,我们提出了基于神经网络参数的隐写分析方法,该方法从良性和恶意模型中提取统计信息,并基于提取的统计信息构建分类器。据我们所知,这是第一个关于神经网络隐写分析的研究。实验结果表明,该算法能够有效地检测出含有嵌入信息的模型。值得注意的是,我们的检测方法在stego模型的有效载荷较低的情况下仍然有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steganalysis of neural networks based on parameter statistical bias
Many pretrained deep learning models have been released to help engineers and researchers develop deep learning-based systems or conduct research with minimall effort. Previous work has shown that at secret message can be embedded in neural network parameters without compromising the accuracy of the model. Malicious developers can, therefore, hide malware or other baneful information in pretrained models, causing harm to society. Hence, reliable detection of these vicious pretrained models is urgently needed. We analyze existing approaches for hiding messages and find that they will ineluctably cause biases in the parameter statistics. Therefore, we propose steganalysis methods for steganography on neural network parameters that extract statistics from benign and malicious models and build classifiers based on the extracted statistics. To the best of our knowledge, this is the first study on neural network steganalysis. The experimental results reveal that our proposed algorithm can effectively detect a model with an embedded message. Notably, our detection methods are still valid in cases where the payload of the stego model is low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国科学技术大学学报
中国科学技术大学学报 Engineering-Mechanical Engineering
CiteScore
0.40
自引率
0.00%
发文量
5692
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信