混合模型中贝叶斯推理的计算解

G. Celeux, K. Kamary, G. Malsiner‐Walli, J. Marin, C. Robert
{"title":"混合模型中贝叶斯推理的计算解","authors":"G. Celeux, K. Kamary, G. Malsiner‐Walli, J. Marin, C. Robert","doi":"10.1201/9780429055911-5","DOIUrl":null,"url":null,"abstract":"This chapter surveys the most standard Monte Carlo methods available for simulating from a posterior distribution associated with a mixture and conducts some experiments about the robustness of the Gibbs sampler in high dimensional Gaussian settings. This is a chapter prepared for the forthcoming 'Handbook of Mixture Analysis'.","PeriodicalId":12943,"journal":{"name":"Handbook of Mixture Analysis","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Computational Solutions for Bayesian Inference in Mixture Models\",\"authors\":\"G. Celeux, K. Kamary, G. Malsiner‐Walli, J. Marin, C. Robert\",\"doi\":\"10.1201/9780429055911-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter surveys the most standard Monte Carlo methods available for simulating from a posterior distribution associated with a mixture and conducts some experiments about the robustness of the Gibbs sampler in high dimensional Gaussian settings. This is a chapter prepared for the forthcoming 'Handbook of Mixture Analysis'.\",\"PeriodicalId\":12943,\"journal\":{\"name\":\"Handbook of Mixture Analysis\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Mixture Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429055911-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Mixture Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429055911-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本章调查了最标准的蒙特卡罗方法,用于模拟与混合物相关的后验分布,并进行了一些关于吉布斯采样器在高维高斯设置中的鲁棒性的实验。这是为即将出版的《混合物分析手册》准备的一章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Solutions for Bayesian Inference in Mixture Models
This chapter surveys the most standard Monte Carlo methods available for simulating from a posterior distribution associated with a mixture and conducts some experiments about the robustness of the Gibbs sampler in high dimensional Gaussian settings. This is a chapter prepared for the forthcoming 'Handbook of Mixture Analysis'.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信