G. Celeux, K. Kamary, G. Malsiner‐Walli, J. Marin, C. Robert
{"title":"混合模型中贝叶斯推理的计算解","authors":"G. Celeux, K. Kamary, G. Malsiner‐Walli, J. Marin, C. Robert","doi":"10.1201/9780429055911-5","DOIUrl":null,"url":null,"abstract":"This chapter surveys the most standard Monte Carlo methods available for simulating from a posterior distribution associated with a mixture and conducts some experiments about the robustness of the Gibbs sampler in high dimensional Gaussian settings. This is a chapter prepared for the forthcoming 'Handbook of Mixture Analysis'.","PeriodicalId":12943,"journal":{"name":"Handbook of Mixture Analysis","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Computational Solutions for Bayesian Inference in Mixture Models\",\"authors\":\"G. Celeux, K. Kamary, G. Malsiner‐Walli, J. Marin, C. Robert\",\"doi\":\"10.1201/9780429055911-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter surveys the most standard Monte Carlo methods available for simulating from a posterior distribution associated with a mixture and conducts some experiments about the robustness of the Gibbs sampler in high dimensional Gaussian settings. This is a chapter prepared for the forthcoming 'Handbook of Mixture Analysis'.\",\"PeriodicalId\":12943,\"journal\":{\"name\":\"Handbook of Mixture Analysis\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Mixture Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9780429055911-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Mixture Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429055911-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Solutions for Bayesian Inference in Mixture Models
This chapter surveys the most standard Monte Carlo methods available for simulating from a posterior distribution associated with a mixture and conducts some experiments about the robustness of the Gibbs sampler in high dimensional Gaussian settings. This is a chapter prepared for the forthcoming 'Handbook of Mixture Analysis'.