{"title":"在非常小的颗粒体积分数下,爱因斯坦有效粘度对沉降的影响","authors":"Richard M. Höfer, Richard Schubert","doi":"10.1016/j.anihpc.2021.02.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We investigate the sedimentation of identical inertialess spherical particles in a Stokes fluid in the limit of many small particles. It is known that the presence of the particles leads to an increase of the effective viscosity of the suspension. By Einstein's formula this effect is of the order of the particle volume fraction </span><em>ϕ</em>. The disturbance of the fluid flow responsible for this increase of viscosity is very singular (like <span><math><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span><span>). Nevertheless, for well-prepared initial configurations and </span><span><math><mi>ϕ</mi><mo>→</mo><mn>0</mn></math></span>, we show that the microscopic dynamics is approximated to order <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>|</mo><mi>log</mi><mo></mo><mi>ϕ</mi><mo>|</mo></math></span> by a macroscopic coupled transport-Stokes system with an effective viscosity according to Einstein's formula. We provide quantitative estimates both for convergence of the densities in the <em>p</em>-Wasserstein distance for all <em>p</em> and for the fluid velocity in Lebesgue spaces in terms of the <em>p</em><span>-Wasserstein distance of the initial data. Our proof is based on approximations through the method of reflections and on a generalization of a classical result on convergence to mean-field limits in the infinite Wasserstein metric by Hauray.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.02.001","citationCount":"14","resultStr":"{\"title\":\"The influence of Einstein's effective viscosity on sedimentation at very small particle volume fraction\",\"authors\":\"Richard M. Höfer, Richard Schubert\",\"doi\":\"10.1016/j.anihpc.2021.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We investigate the sedimentation of identical inertialess spherical particles in a Stokes fluid in the limit of many small particles. It is known that the presence of the particles leads to an increase of the effective viscosity of the suspension. By Einstein's formula this effect is of the order of the particle volume fraction </span><em>ϕ</em>. The disturbance of the fluid flow responsible for this increase of viscosity is very singular (like <span><math><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span><span>). Nevertheless, for well-prepared initial configurations and </span><span><math><mi>ϕ</mi><mo>→</mo><mn>0</mn></math></span>, we show that the microscopic dynamics is approximated to order <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>|</mo><mi>log</mi><mo></mo><mi>ϕ</mi><mo>|</mo></math></span> by a macroscopic coupled transport-Stokes system with an effective viscosity according to Einstein's formula. We provide quantitative estimates both for convergence of the densities in the <em>p</em>-Wasserstein distance for all <em>p</em> and for the fluid velocity in Lebesgue spaces in terms of the <em>p</em><span>-Wasserstein distance of the initial data. Our proof is based on approximations through the method of reflections and on a generalization of a classical result on convergence to mean-field limits in the infinite Wasserstein metric by Hauray.</span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.02.001\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144921000184\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144921000184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The influence of Einstein's effective viscosity on sedimentation at very small particle volume fraction
We investigate the sedimentation of identical inertialess spherical particles in a Stokes fluid in the limit of many small particles. It is known that the presence of the particles leads to an increase of the effective viscosity of the suspension. By Einstein's formula this effect is of the order of the particle volume fraction ϕ. The disturbance of the fluid flow responsible for this increase of viscosity is very singular (like ). Nevertheless, for well-prepared initial configurations and , we show that the microscopic dynamics is approximated to order by a macroscopic coupled transport-Stokes system with an effective viscosity according to Einstein's formula. We provide quantitative estimates both for convergence of the densities in the p-Wasserstein distance for all p and for the fluid velocity in Lebesgue spaces in terms of the p-Wasserstein distance of the initial data. Our proof is based on approximations through the method of reflections and on a generalization of a classical result on convergence to mean-field limits in the infinite Wasserstein metric by Hauray.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.