{"title":"在非常小的颗粒体积分数下,爱因斯坦有效粘度对沉降的影响","authors":"Richard M. Höfer, Richard Schubert","doi":"10.1016/j.anihpc.2021.02.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We investigate the sedimentation of identical inertialess spherical particles in a Stokes fluid in the limit of many small particles. It is known that the presence of the particles leads to an increase of the effective viscosity of the suspension. By Einstein's formula this effect is of the order of the particle volume fraction </span><em>ϕ</em>. The disturbance of the fluid flow responsible for this increase of viscosity is very singular (like <span><math><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span><span>). Nevertheless, for well-prepared initial configurations and </span><span><math><mi>ϕ</mi><mo>→</mo><mn>0</mn></math></span>, we show that the microscopic dynamics is approximated to order <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>|</mo><mi>log</mi><mo></mo><mi>ϕ</mi><mo>|</mo></math></span> by a macroscopic coupled transport-Stokes system with an effective viscosity according to Einstein's formula. We provide quantitative estimates both for convergence of the densities in the <em>p</em>-Wasserstein distance for all <em>p</em> and for the fluid velocity in Lebesgue spaces in terms of the <em>p</em><span>-Wasserstein distance of the initial data. Our proof is based on approximations through the method of reflections and on a generalization of a classical result on convergence to mean-field limits in the infinite Wasserstein metric by Hauray.</span></p></div>","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"38 6","pages":"Pages 1897-1927"},"PeriodicalIF":1.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.02.001","citationCount":"14","resultStr":"{\"title\":\"The influence of Einstein's effective viscosity on sedimentation at very small particle volume fraction\",\"authors\":\"Richard M. Höfer, Richard Schubert\",\"doi\":\"10.1016/j.anihpc.2021.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We investigate the sedimentation of identical inertialess spherical particles in a Stokes fluid in the limit of many small particles. It is known that the presence of the particles leads to an increase of the effective viscosity of the suspension. By Einstein's formula this effect is of the order of the particle volume fraction </span><em>ϕ</em>. The disturbance of the fluid flow responsible for this increase of viscosity is very singular (like <span><math><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span><span>). Nevertheless, for well-prepared initial configurations and </span><span><math><mi>ϕ</mi><mo>→</mo><mn>0</mn></math></span>, we show that the microscopic dynamics is approximated to order <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>|</mo><mi>log</mi><mo></mo><mi>ϕ</mi><mo>|</mo></math></span> by a macroscopic coupled transport-Stokes system with an effective viscosity according to Einstein's formula. We provide quantitative estimates both for convergence of the densities in the <em>p</em>-Wasserstein distance for all <em>p</em> and for the fluid velocity in Lebesgue spaces in terms of the <em>p</em><span>-Wasserstein distance of the initial data. Our proof is based on approximations through the method of reflections and on a generalization of a classical result on convergence to mean-field limits in the infinite Wasserstein metric by Hauray.</span></p></div>\",\"PeriodicalId\":55514,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"volume\":\"38 6\",\"pages\":\"Pages 1897-1927\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.02.001\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-Analyse Non Lineaire\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144921000184\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144921000184","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The influence of Einstein's effective viscosity on sedimentation at very small particle volume fraction
We investigate the sedimentation of identical inertialess spherical particles in a Stokes fluid in the limit of many small particles. It is known that the presence of the particles leads to an increase of the effective viscosity of the suspension. By Einstein's formula this effect is of the order of the particle volume fraction ϕ. The disturbance of the fluid flow responsible for this increase of viscosity is very singular (like ). Nevertheless, for well-prepared initial configurations and , we show that the microscopic dynamics is approximated to order by a macroscopic coupled transport-Stokes system with an effective viscosity according to Einstein's formula. We provide quantitative estimates both for convergence of the densities in the p-Wasserstein distance for all p and for the fluid velocity in Lebesgue spaces in terms of the p-Wasserstein distance of the initial data. Our proof is based on approximations through the method of reflections and on a generalization of a classical result on convergence to mean-field limits in the infinite Wasserstein metric by Hauray.
期刊介绍:
The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.