一类线性动力学模型的混沌

Jacek Banasiak , Mirosław Lachowicz
{"title":"一类线性动力学模型的混沌","authors":"Jacek Banasiak ,&nbsp;Mirosław Lachowicz","doi":"10.1016/S1620-7742(01)01353-8","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years it was observed that chaotic behaviour can occur in some infinite–dimensional linear systems. An example of this type, related to a kinetic model (death process), has been previously reported. In this paper we generalize these earlier results to the case of variable coefficients, showing that the property of being chaotic can be in a certain sense stable. On the other hand the ‘opposite’ birth process cannot be chaotic.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 6","pages":"Pages 439-444"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01353-8","citationCount":"23","resultStr":"{\"title\":\"Chaos for a class of linear kinetic models\",\"authors\":\"Jacek Banasiak ,&nbsp;Mirosław Lachowicz\",\"doi\":\"10.1016/S1620-7742(01)01353-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years it was observed that chaotic behaviour can occur in some infinite–dimensional linear systems. An example of this type, related to a kinetic model (death process), has been previously reported. In this paper we generalize these earlier results to the case of variable coefficients, showing that the property of being chaotic can be in a certain sense stable. On the other hand the ‘opposite’ birth process cannot be chaotic.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 6\",\"pages\":\"Pages 439-444\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01353-8\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

近年来,人们观察到混沌行为可以发生在一些无限维线性系统中。这种类型的一个例子,与动力学模型(死亡过程)有关,以前曾报道过。本文将这些结果推广到变系数的情况,表明混沌的性质在一定意义上可以是稳定的。另一方面,“相反”的出生过程不可能是混乱的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaos for a class of linear kinetic models

In recent years it was observed that chaotic behaviour can occur in some infinite–dimensional linear systems. An example of this type, related to a kinetic model (death process), has been previously reported. In this paper we generalize these earlier results to the case of variable coefficients, showing that the property of being chaotic can be in a certain sense stable. On the other hand the ‘opposite’ birth process cannot be chaotic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信