{"title":"机器学习应用中的问责制:系统测试方法","authors":"Wayne Xinwei Wan, Thies Lindenthal","doi":"10.2139/ssrn.3758451","DOIUrl":null,"url":null,"abstract":"A rapidly expanding universe of technology-focused startups is trying to change and improve the way real estate markets operate. The undisputed predictive power of machine learning (ML) models often plays a crucial role in the 'disruption' of traditional processes. However, an accountability gap prevails: How do the models arrive at their predictions? Do they do what we hope they do – or are corners cut?<br><br>Training ML models is a software development process at heart. We suggest following the dedicated software testing framework and verifying that the ML model is performing as intended. Illustratively, we augment two image classifiers with a system testing procedure based on local interpretable model-agnostic explanation (LIME) techniques. Analyzing the classifications sheds light on some of the factors that determine the behavior of the systems. We show that cross-validation is simply not good enough when operating in regulated environments.","PeriodicalId":21047,"journal":{"name":"Real Estate eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Accountability in Machine Learning Applications: A System-testing Approach\",\"authors\":\"Wayne Xinwei Wan, Thies Lindenthal\",\"doi\":\"10.2139/ssrn.3758451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A rapidly expanding universe of technology-focused startups is trying to change and improve the way real estate markets operate. The undisputed predictive power of machine learning (ML) models often plays a crucial role in the 'disruption' of traditional processes. However, an accountability gap prevails: How do the models arrive at their predictions? Do they do what we hope they do – or are corners cut?<br><br>Training ML models is a software development process at heart. We suggest following the dedicated software testing framework and verifying that the ML model is performing as intended. Illustratively, we augment two image classifiers with a system testing procedure based on local interpretable model-agnostic explanation (LIME) techniques. Analyzing the classifications sheds light on some of the factors that determine the behavior of the systems. We show that cross-validation is simply not good enough when operating in regulated environments.\",\"PeriodicalId\":21047,\"journal\":{\"name\":\"Real Estate eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Estate eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3758451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Estate eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3758451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Accountability in Machine Learning Applications: A System-testing Approach
A rapidly expanding universe of technology-focused startups is trying to change and improve the way real estate markets operate. The undisputed predictive power of machine learning (ML) models often plays a crucial role in the 'disruption' of traditional processes. However, an accountability gap prevails: How do the models arrive at their predictions? Do they do what we hope they do – or are corners cut?
Training ML models is a software development process at heart. We suggest following the dedicated software testing framework and verifying that the ML model is performing as intended. Illustratively, we augment two image classifiers with a system testing procedure based on local interpretable model-agnostic explanation (LIME) techniques. Analyzing the classifications sheds light on some of the factors that determine the behavior of the systems. We show that cross-validation is simply not good enough when operating in regulated environments.