{"title":"工程问题的复值编码多链导引头优化算法","authors":"Shaomi Duan, Huilong Luo, Haipeng Liu","doi":"10.1155/2022/8249030","DOIUrl":null,"url":null,"abstract":"This article comes up with a complex-valued encoding multichain seeker optimization algorithm (CMSOA) for the engineering optimization problems. The complex-valued encoding strategy and the multichain strategy are leaded in the seeker optimization algorithm (SOA). These strategies enhance the individuals’ diversity, enhance the local search, avert falling into the local optimum, and are the influential global optimization strategies. This article chooses fifteen benchmark functions, four proportional integral derivative (PID) control parameter models, and six constrained engineering problems to test. According to the experimental results, the CMSOA can be used in the benchmark functions, in the PID control parameter optimization, and in the optimization of constrained engineering problems. Compared to the particle swarm optimization (PSO), simulated annealing based on genetic algorithm (SA_GA), gravitational search algorithm (GSA), sine cosine algorithm (SCA), multiverse optimizer (MVO), and seeker optimization algorithm (SOA), the optimization ability and robustness of the CMSOA are better than those of others algorithms.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"28 1","pages":"8249030:1-8249030:35"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Complex-Valued Encoding Multichain Seeker Optimization Algorithm for Engineering Problems\",\"authors\":\"Shaomi Duan, Huilong Luo, Haipeng Liu\",\"doi\":\"10.1155/2022/8249030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article comes up with a complex-valued encoding multichain seeker optimization algorithm (CMSOA) for the engineering optimization problems. The complex-valued encoding strategy and the multichain strategy are leaded in the seeker optimization algorithm (SOA). These strategies enhance the individuals’ diversity, enhance the local search, avert falling into the local optimum, and are the influential global optimization strategies. This article chooses fifteen benchmark functions, four proportional integral derivative (PID) control parameter models, and six constrained engineering problems to test. According to the experimental results, the CMSOA can be used in the benchmark functions, in the PID control parameter optimization, and in the optimization of constrained engineering problems. Compared to the particle swarm optimization (PSO), simulated annealing based on genetic algorithm (SA_GA), gravitational search algorithm (GSA), sine cosine algorithm (SCA), multiverse optimizer (MVO), and seeker optimization algorithm (SOA), the optimization ability and robustness of the CMSOA are better than those of others algorithms.\",\"PeriodicalId\":21628,\"journal\":{\"name\":\"Sci. Program.\",\"volume\":\"28 1\",\"pages\":\"8249030:1-8249030:35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sci. Program.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8249030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/8249030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Complex-Valued Encoding Multichain Seeker Optimization Algorithm for Engineering Problems
This article comes up with a complex-valued encoding multichain seeker optimization algorithm (CMSOA) for the engineering optimization problems. The complex-valued encoding strategy and the multichain strategy are leaded in the seeker optimization algorithm (SOA). These strategies enhance the individuals’ diversity, enhance the local search, avert falling into the local optimum, and are the influential global optimization strategies. This article chooses fifteen benchmark functions, four proportional integral derivative (PID) control parameter models, and six constrained engineering problems to test. According to the experimental results, the CMSOA can be used in the benchmark functions, in the PID control parameter optimization, and in the optimization of constrained engineering problems. Compared to the particle swarm optimization (PSO), simulated annealing based on genetic algorithm (SA_GA), gravitational search algorithm (GSA), sine cosine algorithm (SCA), multiverse optimizer (MVO), and seeker optimization algorithm (SOA), the optimization ability and robustness of the CMSOA are better than those of others algorithms.